Меню
Бесплатно
Главная  /  Интернет  /  Колебательный контур. Свободные электромагнитные колебания

Колебательный контур. Свободные электромагнитные колебания

Колебаниями называются движения или процессы, которые характеризуются определенной повторяемостью во времени. Колебания могут быть различными по физической природе (механическими, электромагнитными, гравитационными), но описываются они одинаковыми по структуре уравнениями.

Простейшим типом колебаний являются гармонические колебания , при которых колеблющаяся величина изменяется по гармоническому закону, т. е. по закону синуса или косинуса.

Колебания бывают свободными и вынужденными . Свободные колебания разделяют на незатухающие (собственные) и затухающие .

Свободные незатухающие, или собственные, колебания – это такие колебания, которые совершаются за счет энергии, сообщенной колебательной системе в начальный момент времени, при отсутствии дальнейшего внешнего воздействия на систему.

Дифференциальное уравнение собственных электрических гармонических колебаний контура (рис. 4.1)

где – электрический заряд конденсатора; – циклическая (круговая) частота свободных незатухающих колебаний, (здесь – индуктивность контура; – электрическая емкость контура).

Уравнение электрических гармонических колебаний:

где – амплитуда заряда конденсатора; – начальная фаза.

Сила тока в колебательном контуре

где – амплитуда силы тока, .

Рис. 4.1. Идеальный колебательный контур

Период колебаний – время одного полного колебания. За это время фаза колебаний получает приращение .

Частота колебаний – число колебаний, совершаемых за единицу времени,

Формулы, связывающие период, частоту и циклическую частоту:

Период свободных незатухающих колебаний в электромагнитном колебательном контуре определяется формулой Томсона

Амплитуда результирующего колебания заряда, возникающего в двух разных контурах и складываемого на одной нагрузке, (складываемые колебания одного направления и одинаковой частоты)

где и – амплитуды двух колебаний; и – начальные фазы двух колебаний.

Начальная фаза результирующего колебания заряда, участвующего в двух колебаниях одного направления и одинаковой частоты,

Уравнение биений, т. е. негармонических колебаний, возникающих при наложении гармонических колебаний, частоты которых достаточно близки:

где – амплитуда биений; – частота биений, .

Уравнение траектории движения заряда , участвующего в двух взаимно перпендикулярных колебаниях одинаковой частоты:

Свободные затухающие колебания – это такие колебания, амплитуда которых уменьшается с течением времени вследствие потерь энергии колебательной системой. В электрическом колебательном контуре энергия расходуется на джоулево тепло и на электромагнитное излучение.


Дифференциальное уравнение затухающих электрических колебаний в контуре, имеющем электрическое сопротивление :

где – коэффициент затухания, (здесь – индуктивность контура).

Уравнение затухающих колебаний в случае слабого затухания () (рис. 4.2):

где – амплитуда затухающих колебаний заряда конденсатора; – начальная амплитуда колебаний; – циклическая частота затухающих колебаний, .

Рис. 4.2. Изменение заряда во времени при слабых затухающих колебаниях

Время релаксации – это промежуток времени , в течение которого амплитуда колебаний уменьшается в раз:

Время релаксации связано с коэффициентом затухания соотношением

Логарифмический декремент затухания колебаний

где – период затухающих колебаний.

Формула, связывающая логарифмический декремент колебаний с коэффициентом затухания и периодом затухающих колебаний:

Вынужденные колебания – это такие колебания, которые совершаются при наличии внешнего периодически изменяющегося воздействия.

Дифференциальное уравнение вынужденных электрических колебаний в контуре, имеющем электрическое сопротивление , при наличии вынуждающей ЭДС , изменяющейся по гармоническому закону , где – амплитудное значение ЭДС, а – циклическая частота изменения ЭДС (рис. 4.3):

где – коэффициент затухания, ; – индуктивность контура.

Рис. 4.3. Контур для наблюдения вынужденных электрических колебаний

Уравнение установившихся вынужденных электрических колебаний:

где – разность фаз колебаний заряда конденсатора и вынуждающей ЭДС источника тока.

Амплитуда установившихся вынужденных колебаний заряда конденсатора

Разность фаз колебаний заряда конденсатора и вынуждающей ЭДС источника тока

Амплитуда вынужденных колебаний зависит от соотношения между циклическими частотами вынуждающего воздействия и собственных колебаний . Резонансная частота и резонансная амплитуда.

Основным устройством, определяющим рабочую частоту любого генератора переменного тока, является колебательный контур. Колебательный контур (рис.1) состоит из катушки индуктивности L (рассмотрим идеальный случай, когда катушка не обладает омическим сопротивлением) и конденсатора C и называется замкнутым. Характеристикой катушки является индуктивность, она обозначается L и измеряется в Генри (Гн), конденсатор характеризуют емкостью C , которую измеряют в фарадах (Ф).

Пусть в начальный момент времени конденсатор заряжен так (рис.1), что на одной из его обкладок имеется заряд +Q 0 , а на другой - заряд -Q 0 . При этом между пластинами конденсатора образуется электрическое поле, обладающее энергией

где - амплитудное (максимальное) напряжение или разность потенциалов на обкладках конденсатора.

После замыкания контура конденсатор начинает разряжаться и по цепи пойдет электрический ток (рис.2), величина которого увеличивается от нуля до максимального значения . Так как в цепи протекает переменный по величине ток, то в катушке индуцируется ЭДС самоиндукции, которая препятствует разрядке конденсатора. Поэтому процесс разрядки конденсатора происходит не мгновенно, а постепенно. В каждый момент времени разность потенциалов на обкладках конденсатора

(где - заряд конденсатора в данный момент времени) равна разности потенциалов на катушке, т.е. равна ЭДС самоиндукции

Рис.1 Рис.2

Когда конденсатор полностью разрядится и , сила тока в катушке достигнет максимального значения (рис.3). Индукция магнитного поля катушки в этот момент также максимальна, а энергия магнитного поля будет равна

Затем сила тока начинает уменьшаться, а заряд будет накапливаться на пластинах конденсатора (рис.4). Когда сила тока уменьшится до нуля, заряд конденсатора достигнет максимального значения Q 0 , но обкладка, прежде заряженная положительно, теперь будет заряжена отрицательно (рис. 5). Затем конденсатор вновь начинает разряжаться, причем ток в цепи потечет в противоположном направлении.

Так процесс перетекания заряда с одной обкладки конденсатора на другую через катушку индуктивности повторяется снова и снова. Говорят, что в контуре происходят электромагнитные колебания . Этот процесс связан не только с колебаниями величины заряда и напряжения на конденсаторе, силы тока в катушке, но и перекачкой энергии из электрического поля в магнитное и обратно.

Рис.3 Рис.4

Перезарядка конденсатора до максимального напряжения произойдет только в том случае, когда в колебательном контуре нет потерь энергии. Такой контур называется идеальным.


В реальных контурах имеют место следующие потери энергии:

1) тепловые потери, т.к. R ¹ 0;

2) потери в диэлектрике конденсатора;

3) гистерезисные потери в сердечнике катушке;

4) потери на излучение и др. Если пренебречь этими потерями энергии, то можно написать, что , т.е.

Колебания, происходящие в идеальном колебательном контуре, в котором выполняется это условие, называются свободными , или собственными , колебаниями контура.

В этом случае напряжение U (и заряд Q ) на конденсаторе изменяется по гармоническому закону:

где n - собственная частота колебательного контура, w 0 = 2pn - собственная (круговая) частота колебательного контура. Частота электромагнитных колебаний в контуре определяется как

Период T - время, в течение которого совершается одно полное колебание напряжения на конденсаторе и тока в контуре, определяется формулой Томсона

Сила тока в контуре также изменяется по гармоническому закону, но отстает от напряжения по фазе на . Поэтому зависимость силы тока в цепи от времени будет иметь вид

На рис.6 представлены графики изменения напряжения U на конденсаторе и тока I в катушке для идеального колебательного контура.

В реальном контуре энергия с каждым колебанием будет убывать. Амплитуды напряжения на конденсаторе и тока в контуре будут убывать, такие колебания называются затухающими. В задающих генераторах их применять нельзя, т.к. прибор будет работать в лучшем случае в импульсном режиме.

Рис.5 Рис.6

Для получения незатухающих колебаний необходимо компенсировать потери энергии при самых разнообразных рабочих частотах приборов, в том числе и применяемых в медицине.

Электромагнитное поле может существовать и в отсутствие электрических зарядов или токов: именно такие «самоподдерживающиеся» электрическое и магнитное поля представляют собой электромагнитные волны, к которым относятся видимый свет, инфракрасное, ультрафиолетовое и рентгеновское излучения, радиоволны и т. д.

§ 25. Колебательный контур

Простейшая система, в которой возможны собственные электромагнитные колебания, - это так называемый колебательный контур, состоящий из соединенных между собой конденсатора и катушки индуктивности (рис. 157). Как и у механического осциллятора, например массивного тела на упругой пружине, собственные колебания в контуре сопровождаются энергетическими превращениями.

Рис. 157. Колебательный контур

Аналогия между механическими и электромагнитными колебаниями. Для колебательного контура аналог потенциальной энергии механического осциллятора (например, упругой энергии деформированной пружины) - это энергия электрического поля в конденсаторе. Аналог кинетической энергии движущегося тела - энергия магнитного поля в катушке индуктивности. В самом деле, энергия пружины пропорциональна квадрату смещения из положения равновесия а энергия конденсатора пропорциональна квадрату заряда Кинетическая энергия тела пропорциональна квадрату его скорости а энергия магнитного поля в катушке пропорциональна квадрату силы тока

Полная механическая энергия пружинного осциллятора Е равна сумме потенциальной и кинетической энергий:

Энергия колебаний. Аналогично, полная электромагнитная энергия колебательного контура равна сумме энергий электрического поля в конденсаторе и магнитного поля в катушке:

Из сопоставления формул (1) и (2) следует, что аналогом жесткости к пружинного осциллятора в колебательном контуре служит величина обратная емкости конденсатора С, а аналогом массы - индуктивность катушки

Напомним, что в механической системе, энергия которой дается выражением (1), могут происходить собственные незатухающие гармонические колебания. Квадрат частоты таких колебаний равен отношению коэффициентов при квадратах смещения и скорости в выражении для энергии:

Собственная частота. В колебательном контуре, электромагнитная энергия которого дается выражением (2), могут происходить собственные незатухающие гармонические колебания, квадрат частоты которых тоже, очевидно, равен отношению соответствующих коэффициентов (т. е. коэффициентов при квадратах заряда и силы тока):

Из (4) следует выражение для периода колебаний, называемое формулой Томсона:

При механических колебаниях зависимость смещения х от времени определяется косинусоидальной функцией, аргумент которой называется фазой колебаний:

Амплитуда и начальная фаза. Амплитуда А и начальная фаза а определяются начальными условиями, т. е. значениями смещения и скорости при

Аналогично, при электромагнитных собственных колебаниях в контуре заряд конденсатора зависит от времени по закону

где частота определяется, в соответствии с (4), только свойствами самого контура, а амплитуда колебаний заряда и начальная фаза а, как и у механического осциллятора, определяется

начальными условиями, т. е. значениями заряда конденсатора и силы тока при Таким образом, собственная частота не зависит от способа возбуждения колебаний, в то время как амплитуда и начальная фаза определяются именно условиями возбуждения.

Энергетические превращения. Рассмотрим подробнее энергетические превращения при механических и электромагнитных колебаниях. На рис. 158 схематически изображены состояния механического и электромагнитного осцилляторов через промежутки времени в четверть периода

Рис. 158. Энергетические превращения при механических и электромагнитных колебаниях

Дважды за период колебаний энергия превращается из одного вида в другой и обратно. Полная энергия колебательного контура как и полная энергия механического осциллятора, в отсутствие диссипации остается неизменной. Чтобы убедиться в этом, нужно в формулу (2) подставить выражение (6) для и выражение для силы тока

Используя формулу (4) для получаем

Рис. 159. Графики зависимости от времени заряда конденсатора энергии электрического поля конденсатора и энергии магнитного поля в катушке

Неизменная полная энергия совпадает с потенциальной энергией в моменты, когда заряд конденсатора максимален, и совпадает с энергией магнитного поля катушки - «кинетической» энергией - в моменты, когда заряд конденсатора обращается в нуль, а ток максимален. При взаимных превращениях два вида энергии совершают гармонические колебания с одинаковой амплитудой в противофазе друг с другом и с частотой относительно своего среднего значения . В этом легко убедиться как из рис. 158, так и с помощью формул тригонометрических функций половинного аргумента:

Графики зависимости от времени заряда конденсатора энергии электрического поля и энергии магнитного поля показаны на рис. 159 для начальной фазы

Количественные закономерности собственных электромагнитных колебаний можно установить непосредственно на основе законов для квазистационарных токов, не обращаясь к аналогии с механическими колебаниями.

Уравнение для колебаний в контуре. Рассмотрим простейший колебательный контур, показанный на рис. 157. При обходе контура, например, против часовой стрелки, сумма напряжений на катушке индуктивности и конденсаторе в такой замкнутой последовательной цепи равна нулю:

Напряжение на конденсаторе связано с зарядом пластины и с емкостью С соотношением Напряжение на индуктивности в любой момент времени равно по модулю и противоположно по знаку ЭДС самоиндукции, поэтому Ток в цепи равен скорости изменения заряда конденсатора: Подставляя силу тока в выражение для напряжения на катушке индуктивности и обозначая вторую производную заряда конденсатора по времени через

Получим Теперь выражение (10) принимает вид

Перепишем это уравнение иначе, вводя по определению :

Уравнение (12) совпадает с уравнением гармонических колебаний механического осциллятора с собственной частотой Решение такого уравнения дается гармонической (синусоидальной) функцией времени (6) с произвольными значениями амплитуды и начальной фазы а. Отсюда следуют все приведенные выше результаты, касающиеся электромагнитных колебаний в контуре.

Затухание электромагнитных колебаний. До сих пор обсуждались собственные колебания в идеализированной механической системе и идеализированном LC-контуре. Идеализация заключалась в пренебрежении трением в осцилляторе и электрическим сопротивлением в контуре. Только в этом случае система будет консервативной и энергия колебаний будет сохраняться.

Рис. 160. Колебательный контур с сопротивлением

Учет диссипации энергии колебаний в контуре можно провести аналогично тому, как это было сделано в случае механического осциллятора с трением. Наличие электрического сопротивления катушки и соединительных проводов неизбежно связано с выделением джоулевой теплоты. Как и раньше, это сопротивление можно рассматривать как самостоятельный элемент в электрической схеме колебательного контура, считая катушку и провода идеальными (рис. 160). При рассмотрении квазистационарного тока в таком контуре в уравнение (10) нужно добавить напряжение на сопротивлении

Подставляя в получаем

Вводя обозначения

перепишем уравнение (14) в виде

Уравнение (16) для имеет точно такой же вид, как и уравнение для при колебаниях механического осциллятора с

трением, пропорциональным скорости (вязким трением). Поэтому при наличии электрического сопротивления в контуре электромагнитные колебания происходят по такому же закону, как и механические колебания осциллятора с вязким трением.

Диссипация энергии колебаний. Как и при механических колебаниях, можно установить закон убывания со временем энергии собственных колебаний, применяя закон Джоуля-Ленца для подсчета выделяющейся теплоты:

В результате в случае малого затухания для промежутков времени, много больших периода колебаний, скорость убывания энергии колебаний оказывается пропорциональной самой энергии:

Решение уравнения (18) имеет вид

Энергия собственных электромагнитных колебаний в контуре с сопротивлением убывает по экспоненциальному закону.

Энергия колебаний пропорциональна квадрату их амплитуды. Для электромагнитных колебаний это следует, например, из (8). Поэтому амплитуда затухающих колебаний, в соответствии с (19), убывает по закону

Время жизни колебаний. Как видно из (20), амплитуда колебаний убывает в раз за время равное независимо от начального значения амплитуды Это время х носит название времени жизни колебаний, хотя, как видно из (20), колебания формально продолжаются бесконечно долго. В действительности, конечно, о колебаниях имеет смысл говорить лишь до тех пор, пока их амплитуда превышает характерное значение уровня тепловых шумов в данной цепи. Поэтому фактически колебания в контуре «живут» конечное время, которое, однако, может в несколько раз превосходить введенное выше время жизни х.

Часто бывает важно знать не само по себе время жизни колебаний х, а число полных колебаний, которое произойдет в контуре за это время х. Это число умноженное на называют добротностью контура.

Строго говоря, затухающие колебания не являются периодическими. При малом затухании можно условно говорить о периоде, под которым понимают промежуток времени между двумя

последонательными максимальными значениями заряда конденсатора (одинаковой полярности), либо максимальными значениями тока (одного направления).

Затухание колебаний влияет на период, приводя к его возрастанию по сравнению с идеализированным случаем отсутствия затухания. При малом затухании увеличение периода колебаний очень незначительно. Однако при сильном затухании колебаний вообще может не быть: заряженный конденсатор будет разряжаться апериодически, т. е. без изменения направления тока в контуре. Так будет при т. е. при

Точное решение. Сформулированные выше закономерности затухающих колебаний следуют из точного решения дифференциального уравнения (16). Непосредственной подстановкой можно убедиться, что оно имеет вид

где - произвольные постоянные, значения которых определяются из начальных условий. При малом затухании множитель при косинусе можно рассматривать как медленно меняющуюся амплитуду колебаний.

Задача

Перезарядка конденсаторов через катушку индуктивности. В цепи, схема которой показана на рис. 161, заряд верхнего конденсатора равен а нижний не заряжен. В момент ключ замыкают. Найти зависимость от времени заряда верхнего конденсатора и тока в катушке.

Рис. 161. В начальный момент времени заряжен только один конденсатор

Рис. 162. Заряды конденсаторов и ток в контуре после замыкания ключа

Рис. 163. Механическая аналогия для электрической цепи, показанной на рис. 162

Решение. После замыкания ключа в цепи возникают колебания: верхний конденсатор начинает разряжаться через катушку, заряжая при этом нижний; затем все происходит в обратном направлении. Пусть, например, при положительно заряжена верхняя обкладка конденсатора. Тогда

спустя малый промежуток времени знаки зарядов обкладок конденсаторов и направление тока будут такими, как показано на рис. 162. Обозначим через заряды тех обкладок верхнего и нижнего конденсаторов, которые соединены между собой через катушку индуктивности. На основании закона сохранения электрического заряда

Сумма напряжений на всех элементах замкнутого контура в каждый момент времени равна нулю:

Знак напряжения на конденсаторе соответствует распределению зарядов на рис. 162. и указанному направлению тока. Выражение для тока через катушку можно записать в любом из двух видов:

Исключим из уравнения помощью соотношений (22) и (24):

Вводя обозначения

перепишем (25) в следующем виде:

Если вместо ввести функцию

и учесть, что то (27) принимает вид

Это обычное уравнение незатухающих гармонических колебаний, которое имеет решение

где и - произвольные постоянные.

Возвращаясь от функции получим для зависимости от времени заряда верхнего конденсатора следующее выражение:

Для определения постоянных и а учтем, что в начальный момент заряд а ток Для силы тока из (24) и (31) имеем

Поскольку отсюда следует, что Подставляя теперь в и учитывая, что получаем

Итак, выражения для заряда и силы тока имеют вид

Характер осцилляций заряда и тока особенно нагляден при одинаковых значениях емкостей конденсаторов . В этом случае

Заряд верхнего конденсатора осциллирует с амплитудой около среднего значения, равного За половину периода колебаний он уменьшается от максимального значения в начальный момент до нуля, когда весь заряд оказывается на нижнем конденсаторе.

Выражение (26) для частоты колебаний разумеется, можно было написать сразу, поскольку в рассматриваемом контуре конденсаторы соединены последовательно. Однако написать выражения (34) непосредственно затруднительно, так как при таких начальных условиях нельзя входящие в контур конденсаторы заменить одним эквивалентным.

Наглядное представление о происходящих здесь процессах дает механический аналог данной электрической цепи, показанный на рис. 163. Одинаковые пружины соответствуют случаю конденсаторов одинаковой емкости. В начальный момент левая пружина сжата, что соответствует заряженному конденсатору, а правая находится в недеформированном состоянии, так как аналогом заряда конденсатора здесь служит степень деформации пружины. При прохождении через среднее положение обе пружины частично сжаты, а в крайнем правом положении левая пружина недеформирована, а правая сжата так же, как левая в начальный момент, что соответствует полному перетеканию заряда с одного конденсатора на другой. Хотя шар совершает обычные гармонические колебания около положения равновесия, деформация каждой из пружин описывается функцией, среднее значение которой отлично от нуля.

В отличие от колебательного контура с одним конденсатором, где при колебаниях происходит повторяющаяся его полпая перезарядка, в рассмотренной системе первоначально заряженный конденсатор полностью не перезаряжается. Например, при его заряд уменьшается до нуля, а затем снова восстанавливается в той же полярности. В остальном эти колебания не отличаются от гармонических колебаний в обычном контуре. Энергия этих колебаний сохраняется, если, разумеется, можно пренебречь сопротивлением катушки и соединительных проводов.

Поясните, почему из сопоставления формул (1) и (2) для механической и электромагнитной энергий сделан вывод о том, что аналогом жесткости к является а аналогом массы индуктивность а не наоборот.

Приведите обоснование вывода выражения (4) для собственной частоты электромагнитных колебаний в контуре из аналогии с механическим пружинным осциллятором.

Гармонические колебания в -контуре характеризуются амплитудой, частотой, периодом, фазой колебаний, начальной фазой. Какие из этих величин определяются свойствами самого колебательного контура, а какие зависят от способа возбуждения колебаний?

Докажите, что средние значения электрической и магнитной энергий при собственных колебаниях в контуре равны между собой и составляют половину полной электромагнитной энергии колебаний.

Как применить законы квазистационарных явлений в электрической цепи для вывода дифференциального уравнения (12) гармонических колебаний в -контуре?

Какому дифференциальному уравнению удовлетворяет сила тока в LC-контуре?

Проведите вывод уравнения для скорости убывания энергии колебаний при малом затухании аналогично тому, как это было сделано для механического осциллятора с трением, пропорциональным скорости, и покажите, что для промежутков времени, значительно превосходящих период колебаний, это убывание происходит по экспоненциальному закону. Какой смысл имеет использованный здесь термин «малое затухание»?

Покажите, что функция даваемая формулой (21), удовлетворяет уравнению (16) при любых значениях и а.

Рассмотрите механическую систему, показанную на рис. 163, и найдите зависимость от времени деформации левой пружины и скорости массивного тела.

Контур без сопротивления с неизбежными потерями. В рассмотренной выше задаче, несмотря на не совсем обычные начальные условия для зарядов на конденсаторах, можно было применить обычные уравнения для электрических цепей, поскольку там были выполнены условия квазистационарности протекающих процессов. А вот в цепи, схема которой показана на рис. 164, при формальном внешнем сходстве со схемой на рис. 162, условия квазистационарности не выполняются, если в начальный момент один конденсатор заряжен, а второй - нет.

Обсудим подробнее причины, по которым здесь нарушаются условия квазистационарности. Сразу после замыкания

Рис. 164. Электрическая цепь, для которой не выполняются условия квазистационарности

ключа все процессы разыгрываются только в соединенных между собой конденсаторах, так как нарастание тока через катушку индуктивности происходит сравнительно медленно и поначалу ответвлением тока в катушку можно пренебречь.

При замыкании ключа возникают быстрые затухающие колебания в контуре, состоящем из конденсаторов и соединяющих их проводов. Период таких колебаний очень мал, так как мала индуктивность соединительных проводов. В результате этих колебаний заряд на пластинах конденсаторов перераспределяется, после чего два конденсатора можно рассматривать как один. Но в первый момент этого делать нельзя, ибо вместе с перераспределением зарядов происходит и перераспределение энергии, часть которой переходит в теплоту.

После затухания быстрых колебаний в системе происходят колебания, как в контуре с одним конденсатором емкости заряд которого в начальный момент равен первоначальному заряду конденсатора Условием справедливости приведенного рассуждения является малость индуктивности соединительных проводов по сравнению с индуктивностью катушки.

Как и в рассмотренной задаче, полезно и здесь найти механическую аналогию. Если там две пружины, соответствующие конденсаторам, были расположены по обе стороны массивного тела, то здесь они должны быть расположены по одну сторону от него, так чтобы колебания одной из них могли передаваться другой при неподвижном теле. Вместо двух пружин можно взять одну, но только в начальный момент она должна быть деформирована неоднородно.

Захватим пружину за середину и растянем ее левую половину на некоторое расстояние Вторая половина пружины останется в недеформированном состоянии, так что груз в начальный момент смещен из положения равновесия вправо на расстояние При начальных условиях нашей задачи, когда на расстояние растянута половина пружины, запас энергии равен ибо, как нетрудно сообразить, жесткость «половины» пружины равна Если масса пружины мала по сравнению с массой шара, частота собственных колебаний пружины как протяженной системы много больше частоты колебаний шара на пружине. Эти «быстрые» колебания затухнут за время, составляющее малую долю периода колебаний шара. После затухания быстрых колебаний натяжение в пружине перераспределяется, а смещение груза практически остается равным так как груз за это время не успевает заметно сдвинуться. Деформация пружины становится однородной, а энергия системы равной

Таким образом, роль быстрых колебаний пружины свелась к тому, что запас энергии системы уменьшился до того значения, которое соответствует однородной начальной деформации пружины. Ясно, что дальнейшие процессы в системе не отличаются от случая однородной начальной деформации. Зависимость смещения груза от времени выражается той же самой формулой (36).

В рассмотренном примере в результате быстрых колебаний превратилась во внутреннюю энергию (в теплоту) половина первоначального запаса механической энергии. Ясно, что, подвергая начальной деформации не половину, а произвольную часть пружины, можно превратить во внутреннюю энергию любую долю первоначального запаса механической энергии. Но во всех случаях энергия колебаний груза на пружине соответствует запасу энергии при той же однородной начальной деформации пружины.

В электрической цепи в результате затухающих быстрых колебаний энергия заряженного конденсатора частично выделяется в виде джоулевой теплоты в соединительных проводах. При равных емкостях это будет половина первоначального запаса энергии. Вторая половина остается в форме энергии сравнительно медленных электромагнитных колебаний в контуре, состоящем из катушки и двух соединенных параллельно конденсаторов С, и

Таким образом, в этой системе принципиально недопустима идеализация, при которой пренебрегается диссипацией энергии колебаний. Причина этого в том, что здесь возможны быстрые колебания, не затрагивающие катушки индуктивности или массивного тела в аналогичной механической системе.

Колебательный контур с нелинейными элементами. При изучении механических колебаний мы видели, что колебания далеко не всегда бывают гармоническими. Гармонические колебания - это характерное свойство линейных систем, в которых

возвращающая сила пропорциональна отклонению от положения равновесия, а потенциальная энергия - квадрату отклонения. Реальные механические системы этими свойствами, как правило, не обладают, и колебания в них можно считать гармоническими лишь при малых отклонениях от положения равновесия.

В случае электромагнитных колебаний в контуре может сложиться впечатление, что мы имеем дело с идеальными системами, в которых колебания строго гармонические. Однако это верно лишь до тех пор, пока емкость конденсатора и индуктивность катушки можно считать постоянными, т. е. не зависящими от заряда и тока. Конденсатор с диэлектриком и катушка с сердечником, строго говоря, представляют собой нелинейные элементы. Когда конденсатор заполнен сегнетоэлектриком, т. е. веществом, диэлектрическая проницаемость которого сильно зависит от приложенного электрического поля, емкость конденсатора уже нельзя считать постоянной. Аналогично, индуктивность катушки с ферромагнитным сердечником зависит от силы тока, так как ферромагнетик обладает свойством магнитного насыщения.

Если в механических колебательных системах массу, как правило, можно считать постоянной и нелинейность возникает только из-за нелинейного характера действующей силы, то в электромагнитном колебательном контуре нелинейность может возникать как за счет конденсатора (аналога упругой пружины), так и за счет катушки индуктивности (аналога массы).

Почему для колебательного контура с двумя параллельными конденсаторами (рис. 164) неприменима идеализация, в которой система считается консервативной?

Почему быстрые колебания, приводящие к диссипации энергии колебаний в контуре на рис. 164, не возникали в контуре с двумя последовательными конденсаторами, показанными на рис. 162?

Какие причины могут приводить к несинусоидальности электромагнитных колебаний в контуре?

ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ И ВОЛНЫ

§1 Колебательный контур.

Собственные колебания в колебательном контуре.

Формула Томсона.

Затухающие и вынужденные колебания в к.к.

  1. Свободные колебания в к.к.


Колебательным контуром (к.к.) называется цепь, состоящая из конденсатора и катушки индуктивности. При определенных условиях в к.к. могут возникнуть электромагнитные колебания заряда, тока, напряжения и энергии.

Рассмотрим цепь, показанную на рис.2. Если поставить ключ в положение 1, то будет происходить заряд конденсатора и на его обкладках появится заряд Q и напряжение U C . Если затем перевести ключ в положение 2, то конденсатор начнет разряжаться, в цепи потечет ток, при этом энергия электрического поля, заключенного между обкладками конденсатора, будет превращаться в энергию магнитного поля, сосредоточенную в катушке индуктивности L . Нали-чие катушки индуктивности приводит к тому, что ток в цепи увеличивается не мгновенно, а постепенно из-за явления самоиндук-ции. По мере разряда конденсатора заряд на его обкладках будет уменьшаться, ток в цепи увеличиваться. Максимального значения контурный ток достигнет при заряде на обкладках равном нули. С этого момента контурный ток начнет уменьшаться, но, благодаря явлению самоиндукции, он будет поддерживаться магнитным полем катушки индуктивности, т.е. при полном разряде конденсатора энергия магнитного поля, запасенного в катушке индуктивности, начнет переходить в энергию электрического поля. Из-за контурного тока начнется перезаряд конденсатора и на его обкладках начнет накапливаться заряд противоположный первоначальному. Перезаряд конденсатора будет происходить до тех пор, пока вся энергия магнитного поля катушки индуктивности не перейдет в энергию электрического поля конденсатора. Затем процесс повторится в обратном направлении, и, таким образом, в цепи возникнут электромагнитные колебания.

Запишем 2 -й закон Кирхгофа для рассматриваемого к.к,

Дифференциальное уравнение к.к.

Мы получили дифференциальное уравнение колебаний заряда в к.к. Это уравнение аналогично дифференциальному уравнению, описывающему движение тела под действием квазиупругой силы. Следовательно, аналогично будет записываться и решение этого уравнения

Уравнение колебаний заряда в к.к.

Уравнение колебаний напряжения на обкладках конденсатора в к.к.

Уравнение колебаний тока в к.к.

  1. Затухающие колебания в к.к.

Рассмотрим к.к., содержащий емкость, индуктивность и сопротивление. 2-й закон Кирхгофа в этом случае запишется в виде

- коэффициент затухания,

Собственная циклическая частота.

- - дифференциальное уравнение затухающих колебаний в к.к.

Уравнение затухающих колебаний заряда в к.к.

Закон изменения амплитуды заряда при затухающих колебаниях в к.к.;

Период затухающих колебаний.

Декремент затухания.

- логарифмический декремент затухания.

Добротность контура.

Если затухание слабое, тогда Т ≈Т 0

Исследуем изменение напряжения на обкладках конденсатора.

Изменение тока отличается по фазе на φ от напряжения.

при - возможны затухающие колебания,

при - критическое положение


при , т.е. R > R К - колебания не возникают (апериодический разряд конденсатора).

>> Уравнение, описывающее процессы в колебательном контуре. Период свободных электрических колебаний

§ 30 УРАВНЕНИЕ, ОПИСЫВАЮЩЕЕ ПРОЦЕССЫ В КОЛЕБАТЕЛЬНОМ КОНТУРЕ. ПЕРИОД СВОБОДНЫХ ЭЛЕКТРИЧЕСКИХ КОЛЕБАНИЙ

Перейдем теперь к количественной теории процессов в колебательном контуре.

Уравнение, описывающее процессы в колебательном контуре. Рассмотрим колебательный контур, сопротивлением R которого можно пренебречь (рис. 4.6).

Уравнение, описываюндее свободные электрические колебания в контуре, можно получить с помощью закона сохранения энергии. Полная электромагнитная энергия W контура в любой момент времени равна сумме его энергий магнитного и электрического полей:

Эта энергия не меняется с течением времени, если ео противление R контура равно нулю. Значит, производная полной энергии по времени равна нулю. Следовательно, равна нулю сумма производных по времени от энергий магнитного и электрического полей:

Физический смысл уравнения (4.5) состоит в том, что скорость изменения энергии магнитного поля по модулю равна скорости изменения энергии электрического поля; знак «-» указывает на то, что, когда энергия электрического поля возрастает, энергия магнитного поля убывает (и наоборот).

Вычислив производные в уравнении (4.5), получим 1

Но производная заряда по времени представляет собой силу тока в данный момент времени:

Поэтому уравнение (4.6) можно переписать в следующем виде:

1 Мы вычисляем производные по времени. Поэтому производная (і 2)" равна не просто 2 і , как было бы при вычислении производной но і. Нужно 2 і умножить еще на производную i" силы тока по времени, так как вычисляется производная от сложной функции. То же самое относится к производной (q 2)".

Производная силы тока по времени есть не что иное, как вторая производная заряда по времени, подобно тому как производная скорости по времени (ускорение) есть вторая производная координаты по времени. Подставив в уравнение (4.8) і" = q" и разделив левую и правую части этого уравнения на Li, получим основное уравнение, описывающее свободные электрические колебания в контуре:

Теперь вы в полной мере можете оценить значение тех усилий, которые были затрачены для изучения колебаний шарика на пружине и математического маятника. Ведь уравнение (4.9) ничем, кроме обозначений, не отличается от уравнения (3.11), описывающего колебания шарика на пружине. При замене в уравнении (3.11) х на q, х" на q", k нa 1/C и m нa L мы в точности получим уравнение (4.9). Но уравнение (3.11) было уже решено выше. Поэтому, зная формулу, описывающую колебания пружинного маятника, мы сразу же можем записать формулу для описания электрических колебаний в контуре.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки