Меню
Бесплатно
Главная  /  Навигаторы  /  Файловые системы linux сравнение. Файловые системы Windows

Файловые системы linux сравнение. Файловые системы Windows

Операционная система Linux поддерживает огромное количество разнообразных типов файловых систем. С точки зрения Linux файловые системы можно условно разделить на четыре группы:

  • «Родные» файловые системы. Имеется в виду, что файловая система поддерживает все атрибуты, свойственные Linux: права доступа, временные метки, информацию о владельце файла и т.д.;
  • «Неродные» файловые системы. То есть файловые системы, не поддерживающие атрибуты Linux;
  • Виртуальные. Это файловые системы, которые не имеют физического носителя;
  • Сетевые файловые системы.

К «родным» файловым системам можно отнести:

  • reiserfs

Файловая система ext2

Ext2 - это одна из первых файловых систем, используемых в Linux (Если говорить более точно, то первая файловая система Linux - это minix. Но возможности этой fs весьма ограничены, и она применялась только на начальном этапе развития Linux. ). Она была создана в 1993 году. Система считается очень надёжной и проверенной временем. Но, поскольку ext2 разрабатывалась в те времена, когда жёсткий диск размером 300 Мбайт считался очень большим, ей присущи некоторые ограничения. Применять эту fs для больших разделов не имеет смысла, она начнёт «тормозить», когда в разделе будет большое количество файлов. То есть ext2 считается медленной (Понятие «медленная» очень относительное. Ext2 считается медленной в Linux. Но если сравнить её со стандартной файловой системой FreeBSD, окажется, что ext2 очень даже быстрая. ). Конечно, с увеличением размеров дисков, с появлением новых веяний, в файловую систему вносились изменения, улучшающие её работу и функциональность. Например, поддержка POSIX ACL. Но всё же её не коснулись глобальные изменения, позволяющие говорить:

Да, это та самая, единственная файловая система, которая меня полностью устраивает.

Кроме того, ext2 имеет серьёзные ограничения:

  • Максимальный размер файла - 2048 Гбайт.
  • Максимальный размер файловой системы - 32768 Гбайт.
  • Максимальное количество поддиректорий в одной директории - 32768.

Журналируемые файловые системы

Сейчас файловую систему ext2 уже практически не используют. И дело даже не в её ограничениях, ext2 достаточно надёжная файловая система. Всё дело в скорости загрузки Linux-серверов. Необходимо, чтобы сервер работал постоянно. Но чудес не бывает, сервера иногда приходится перегружать. Ваша задача - сделать так, чтобы после падения системы они перегружались как можно быстрее. При включении сервера происходит проверка дисков. Процедура проверки файловых систем, особенно больших, - достаточно длительная процедура. Если таких файловых систем несколько, то их проверка может занять очень много времени. А сервер должен работать!

Для уменьшения времени, тратящегося на проверку, и для увеличения надёжности были разработаны журналируемые файловые системы. Если вы работали с базами данных, вам наверняка известно такое понятие как транзакция. В транзакцию объединяют несколько SQL-операторов. Система должна выполнить все операторы. Если хотя бы один из них не срабатывает, то система откатывается на начало транзакции. Если система была отключена во время выполнения транзакции, при включении, если это возможно, она пытается выполнить оставшиеся операторы или вернуться на начало транзакции.

В современные файловые системы была добавлена поддержка журнала транзакций. С точки зрения работы файловой системы все операции с файлом выглядят как одна транзакция. Если посмотреть подробнее на файловые операции в Linux, запись или изменение файла - это довольно сложная процедура, состоящая из многих действий с данными на диске. При использовании журнала транзакций, прежде чем какие-либо физические изменения будут произведены на диске, в журнале открывается новая транзакция, в которой будут записаны все действия, которые будут производиться с файловой системой. И только после того, как транзакция будет сохранена на диске, будут производится изменения в файловой системе.

Если файловая система будет отключена некорректно, программа проверки сначала смотрит журнал транзакций и на основании данных, находящихся в нём, попытается либо вернуть (откатить) систему на момент начала транзакции, или, если это возможно, завершить действия, описанные в транзакции. Учитывая то, что журнал имеет небольшой размер (в файловой системе ext3 он равен 32 Мбайт), процесс восстановления файловой системы значительно ускоряется.

Файловая система ext3

Когда возникла необходимость внедрения журналируемых файловых систем в Linux, компания RedHat разработала файловую систему ext3. В RedHat пошли путём наименьшего сопротивления - за основу взяли хорошо известную ext2 и добавили поддержку журнала.

По своему физическому устройству ext2 идентична ext3. Эта особенность позволила применять для работы с ext3 такие же утилиты (создание, проверка и настройка файловых систем), как и для работы с ext2.

Несмотря на добавление журнала, ext3 работает быстрее, чем ext2. К достоинствам ext3 следует также отнести возможность журналирования не только необходимых действий, но и данных, что не позволяют делать другие журналируемые системы. Благодаря этой особенности ext3 считается очень надёжной.

Ext3 поддерживает три режима работы:

  • Writeback - в этом режиме не происходит журналирования данных. В журнал сначала помещаются так называемые метаданные (inode файла, ссылки на блоки). Только после того, как они попали в журнал, происходит запись данных в файловую систему.
  • Ordered (режим по умолчанию) - этот режим похож на описанный выше. Единственным отличием является то, что в режиме writeback в журнал сначала помещаются все метаданные, и только после этого происходят изменения в файловой системе. А в режиме ordered при помещении информации о блоке в журнал этот блок сразу же изменяется в файловой системе. Затем в журнал помещается информация о следующем блоке, и блок записывается, и так далее. То есть данные изменяются параллельно с изменением в журнале.
  • Journal - режим полного журналирования. В журнал попадают метаданные и данные. И только после этого происходит изменение в файловой системе.

Файловая система ReiserFS

ReiserFS разрабатывается Гансом Реизером (Hans Reiser) и его компанией Namesys (http://www.namesys.com). Это очень быстрая файловая система, хорошо приспособленная для хранения большого количества маленьких файлов.

В ней удалось решить проблему размещения на диске маленьких файлов. Например, в ext2/3 для размещения файла, содержащего единственный символ, на диске будет занят целый блок. Блок ext2/3 может иметь размер от 1 до 8 Кбайт (размер зависит от объема файловой системы ). А в ReiserFS в одном блоке могут быть размещены данные нескольких файлов. Более того, если размер файла очень мал, данные могут быть размещены в inode, то есть непосредственно в метаданных.

Файловая система базируется на оптимизированных деревьях (B tree). Это увеличивает скорость поиска в файловой системе и снимает вопрос ограничения количества файлов и директорий в директории.

С файлами большого размера данная файловая система тоже справляется весьма уверенно.

Для файловой системы ReiserFS версии 3.6 существуют следующие ограничения:

  • Максимальный размер файла - 8 Тбайт (для 32-битных компьютеров);
  • Максимальный размер файловой системы - 16 Тбайт.

Сейчас разрабатывается следующая версия ReiserFS - четвёртая. Ожидается, что она будет включена в ядрах версии 2.6.17 или 2.6.18.

Файловая система JFS

Эта файловая система разрабатывается компанией IBM и распространяется под лицензией GNU GPL. Описание JFS можно найти в Интернете на сайте . JFS используется не только в Linux, но и в других операционных системах, например, в AIX и OS/2.

JFS - журналируемая файловая система. Основной её конёк - использование совместно с LVM (Logical Volume Manager). LVM позволяет объединять несколько физических разделов жёстких дисков в один логический, который затем можно разбивать на разделы как обыкновенный жёсткий диск. При этом некоторые типы LVM позволяют на лету подключать новое дисковое пространство. И если на увеличивающихся разделах использовать файловую систему ext3, в один прекрасный момент вы получите сообщение о невозможности создания нового файла. Дело в том, что при форматировании раздела в ext3 в нём заранее, в зависимости от размера, резервируется конечное количество inodes. То есть заранее известно максимальное количество файлов. Если размер файловой системы не будет увеличиваться, то этого количества inodes вполне хватает для нормальной работы. В JFS есть возможность динамического увеличения файловой системы и количества inodes. Благодаря этому свойству, при увеличении размера файловой системы не возникает ограничение на количество создаваемых файлов.

Для файловой системы JFS существуют следующие ограничения:

  • Максимальный размер файла ограничивается разрядностью операционной системы.
  • Максимальный размер файловой системы - 512 Тбайт.

Файловая система XFS

Файловая система XFS разрабатывалась в компании SGI (бывшая Silicon Graphics, Inc.). XFS появилась на свет в 1994 году и изначально поставлялась с операционной системой IRIX. Компания SGI славится своими рабочими станциями для производства видео, а также серверами для хранения данных. Поэтому файловая система оптимизирована для обслуживания большого количества огромных файлов и для поддержки больших директорий. Благодаря своей структуре, она так же хорошо поддерживает большое количество маленьких файлов. По своему быстродействию она сопоставима с файловой системой ReiserFS, а по надёжности превосходит файловую систему Ганса (Сколько данных было мной потеряно в файловой системе ReiserFS на пустом месте. Спасало только резервное копирование. Поэтому сейчас я ReiserFS на серверах не использую. ).

Поддержка больших файлов возможна благодаря тому, что XFS - это 64-битная файловая система. А скорость работы файловой системы достигается благодаря использованию В+ деревьев для поиска и описания внутренних структур.

Внутренне устройство файловой системы достаточно сложное, и я не вижу необходимости в кратком описании ее структуры. Тем более, что в Интернете есть хорошие статьи, подробно описывающие XFS:

Файловые системы компании Microsoft

Если говорить о файловых системах компании Microsoft, в Linux поддерживаются FAT и NTFS. С FAT всё очень просто, структура файловой системы известна, поэтому в Linux она поддерживается полностью. Единственное, что необходимо учесть при использовании FAT, в Linux существует две её разновидности:

  • msdos - FAT12/16.
  • vfat - FAT32.

Поддержку FAT следует включать в том случае, если вы предполагаете использовать гибкие диски и различные USB-накопители: флеш-карты, жёсткие диски и т.д. Дело в том, что все они обычно отформатированы в FAT.

C NTFS немного сложнее. Эта файловая система нормально поддерживается в режиме только для чтения. В режиме записи её не рекомендуется использовать. Хотя режим записи поддерживается, но если почитать документацию к драйверам NTFS, вы увидите, что там большими буквами написано: в режиме записи можно только изменять содержимое существующих файлов, ни в коем случае нельзя создавать новые файлы, удалять или изменять размер существующих - это может разрушить файловую систему.

Файловые системы iso9660 и udf

Эти файловые системы используются для хранения информации на CD- и DVD-дисках.

Изначально iso9660 была очень простой файловой системой с большим количеством ограничений. Например, имена файлов как в MS DOS, ограничение на количество вложений директорий. Поэтому для iso9660 было написано несколько дополнений, расширяющих её возможности. В том числе, дополнения, позволяющие сохранять атрибуты файлов UNIX. Все дополнения поддерживаются драйвером файловой системы, и никаких затруднений при работе быть не должно. Более того, драйвер iso9660 поддерживает, как это ни странно звучит, режим записи. Он применяется при создании образов CD-ROM.

С udf тоже не замечено особых проблем. Таким образом, работа с CD- и DVD-дисками поддерживается в Linux без каких-либо ограничений.

Файловая система proc

Относится ке разряду виртуальных фаловых систем. Очень полезная файловая система. В работе администратора вы очень часто будете обращаться к её возможностям. В одной из первых глав, рассказывающих об организации файловой системы Linux, я вкратце рассказывал о предназначении этой файловой системы. Просто напомню, что файлы, которые находятся в директории /proc - это отображение области данных ядра на файловую систему. То есть, если вы просматриваете содержимое какого-либо файла, на самом деле вы видите определённую часть области данных ядра.

Ниже опишу некоторые интересные файлы, которые вы можете встретить в директории /proc . Содержимое файлов в вашей системе будет отличаться от содержимого файлов, показанных в качестве примеров.

/proc/cmdline

Содержит командную строку, переданную ядру при его запуске.

# cat cmdline BOOT_IMAGE=Linux-2613 ro root=303 #

/proc/cpuinfo

Информация о процессоре или процессорах.

# cat cpuinfo processor: 0 vendor_id: GenuineIntel cpu family: 6 model: 9 model name: Intel(R) Pentium(R) M processor 1400MHz stepping: 5 cpu MHz: 1399.050 cache size: 1024 KB fdiv_bug: no hlt_bug: no f00f_bug: no coma_bug: no fpu: yes fpu_exception: yes cpuid level: 2 wp: yes flags: fpu vme de pse tsc msr mce cx8 sep mtrr pge mca cmov pat clflush dts acpi mmx fxsr sse sse2 tm pbe est tm2 bogomips: 2800.93 #

/proc/devices

Список устройств.

# cat devices Character devices: 1 mem 2 pty 3 ttyp 4 /dev/vc/0 4 tty 4 ttyS 5 /dev/tty 5 /dev/console 5 /dev/ptmx 7 vcs 10 misc 13 input 14 sound 21 sg 116 alsa 128 ptm 136 pts 171 ieee1394 180 usb 226 drm 254 pcmcia Block devices: 3 ide0 7 loop 8 sd 11 sr 65 sd #

/proc/dma

Использование каналов DMA.

# cat dma 4: cascade #

/proc/filesystems

Список поддерживаемых файловых систем.

# cat filesystems nodev sysfs nodev rootfs nodev bdev nodev proc nodev sockfs nodev pipefs nodev futexfs nodev tmpfs nodev inotifyfs nodev eventpollfs nodev devpts ext3 ext2 nodev ramfs msdos vfat iso9660 ntfs udf nodev mqueue nodev usbfs #

/proc/interrupts

Распределение прерываний.

# cat interrupts CPU0 0: 850627 XT-PIC timer 1: 9691 XT-PIC i8042 2: 0 XT-PIC cascade 7: 2 XT-PIC parport0 8: 1 XT-PIC rtc 9: 6620 XT-PIC acpi 11: 238626 XT-PIC Intel 82801DB-ICH4, yenta, yenta, eth0, eth1, ohci1394, ehci_hcd:usb1, uhci_hcd:usb2, uhci_hcd:usb3, uhci_hcd:usb4, radeon@pci:0000:01:00.0 12: 65575 XT-PIC i8042 14: 11538 XT-PIC ide0 NMI: 0 LOC: 0 ERR: 0 MIS: 0 #

/proc/modules

Список загруженных модулей.

# cat modules irtty_sir 5248 0 - Live 0xf8a09000 sir_dev 13548 1 irtty_sir, Live 0xf8a1d000 irda 107768 1 sir_dev, Live 0xf8a3f000 crc_ccitt 1792 1 irda, Live 0xf8a04000 parport_pc 24324 0 - Live 0xf8a16000 parport 30920 1 parport_pc, Live 0xf8a0d000 uhci_hcd 30416 0 - Live 0xf89e7000 ehci_hcd 27656 0 - Live 0xf897a000 usbcore 103740 3 uhci_hcd,ehci_hcd, Live 0xf8990000 ohci1394 31092 0 - Live 0xf895e000 ieee1394 86392 1 ohci1394, Live 0xf891e000 ipw2100 78204 0 - Live 0xf8936000 ieee80211 18948 1 ipw2100, Live 0xf8918000 ieee80211_crypt 4488 1 ieee80211, Live 0xf88f8000 eepro100 26512 0 - Live 0xf8909000 pcmcia 30568 4 - Live 0xf8900000 firmware_class 7680 2 ipw2100,pcmcia, Live 0xf88f2000 yenta_socket 20748 4 - Live 0xf8879000 rsrc_nonstatic 11264 1 yenta_socket, Live 0xf8875000 pcmcia_core 34640 3 pcmcia,yenta_socket,rsrc_nonstatic, Live 0xf88e2000 #

/proc/mounts

Содержит список подключенных файловых систем.

# cat mounts rootfs / rootfs rw 0 0 /dev/root / ext3 rw 0 0 proc /proc proc rw,nodiratime 0 0 sysfs /sys sysfs rw 0 0 none /dev ramfs rw 0 0 /dev/hda5 /usr ext3 rw 0 0 /dev/hda6 /home ext3 rw 0 0 /dev/hda1 /mnt/win ntfs ro,noatime,nodiratime,uid=0,gid=0,fmask=0177,dmask=077,nls=iso8859-1, errors=continue,mft_zone_multiplier=1 0 0 devpts /dev/pts devpts rw 0 0 usbfs /proc/bus/usb usbfs rw 0 0 #

/proc/partitions

Содержит список разделов всех подключенных накопителей.

# cat partitions major minor #blocks name 3 0 58605120 hda 3 1 10485688 hda1 3 2 506520 hda2 3 3 9775080 hda3 3 4 1 hda4 3 5 9775048 hda5 3 6 28062688 hda6 #

/proc/pci

Список устройств, обнаруженных на шине PCI.

Этот файл можно использовать для диагностики причин, почему не работают некоторые устройства. Обращайте внимание на прерывания: если оно равно 0, это значит, что устройству по какой-либо причине не было выделено прерывание. Я не буду полностью приводить содержимое этого файла, он очень большой.

# cat pci PCI devices found: Bus 0, device 0, function 0: Host bridge: Intel Corporation 82855PM Processor to I/O Controller (rev 3). Prefetchable 32 bit memory at 0xd0000000 . Bus 0, device 1, function 0: PCI bridge: Intel Corporation 82855PM Processor to AGP Controller (rev 3). Master Capable. Latency=96. Min Gnt=12. Bus 0, device 29, function 0: USB Controller: Intel Corporation 82801DB/DBL/DBM (ICH4/ICH4-L/ICH4-M) USB UHCI Controller #1 (rev 1). IRQ 11. I/O at 0x1800 . #

/proc/swaps

Содержит список подключенных swap файлов и разделов.

# cat swaps Filename Type Size Used Priority /dev/hda2 partition 506512 0 -1 #

/proc/version

Содержит информацию о версии операционной системы и ядра Linux.

# cat version Linux version 2.6.13-rc3-my (root@master) (gcc version 3.3.6) #3 Tue Jul 19 22:25:23 GMT+3 2005 #

Информация о процессах

Кроме файлов в /proc находятся директории, имеющие в качестве имени число. Каждая директория описывает процесс, PID которого соответствует имени директории. Файлы в этой директории описывают параметры процесса. Содержимое одной из директория приведено ниже.

# ls /proc/4624 auxv cwd@ exe@ maps mounts oom_score seccomp statm task/ cmdline environ fd/ mem oom_adj root@ stat status wchan #

Только несколько из приведенных в примере файлов содержат информацию, которая была бы понятна без предварительной обработки.

cmdline

Содержит аргументы командной строки.

# cat cmdline -su #

environ

Содержит значения переменных среды окружения процесса.

# cat environ HZ=100TERM=xtermPATH=/usr/local/sbin:/usr/local/bin:/sbin:/usr/sbin:/bin:/usr/binHOME=/rootSHELL=/bin/bashUSER=rootLOGNAME=rootMAIL=/var/spool/mail/root #

status

Содержит информацию о состоянии процесса в формате понятном человеку.

# cat status Name: bash State: S (sleeping) SleepAVG: 98% Tgid: 4510 Pid: 4510 PPid: 4498 TracerPid: 0 Uid: 0 0 0 0 Gid: 0 0 0 0 FDSize: 256 Groups: 0 1 2 3 4 6 10 11 VmSize: 2832 kB VmLck: 0 kB VmRSS: 1724 kB VmData: 388 kB VmStk: 88 kB VmExe: 628 kB VmLib: 1628 kB VmPTE: 12 kB Threads: 1 SigQ: 0/7168 SigPnd: 0000000000000000 ShdPnd: 0000000000000000 SigBlk: 0000000000010000 SigIgn: 0000000000384004 SigCgt: 000000004b813efb CapInh: 0000000000000000 CapPrm: 00000000fffffeff CapEff: 00000000fffffeff #

Другие директории

Коме директорий, описывающих процессы системы, в /proc могут находиться и другие директории. Ниже приведу назначение некоторых из них:

  • ide - информация об устройствах, подключенных к ide интерфейсу.
  • irq - информация о распределении прерываний.
  • net - информация о сети. Содержимое таблицы arp и таблицы маршрутизации. Статистика по сетевым интерфейсам и протоколом. И так далее.
  • scsi - информация о SCSI устройствах.
  • sys - содержит изменяемые параметры системы.

/proc/sys

Файловая система /proc/sys - это отдельная большая тема. При помощи файлов, находящихся в этой директории можно «на лету» изменять параметры системы. Достаточно записать нужное значение в определенный файл. Описывать /proc/sys я не буду, слишком много информации и слишком много надо знать, что бы понять для чего используются файлы. Поэтому я расскажу где найти документацию и описание по этой файловой системе:

Sysfs используется программой udev для динамического создания файлов устройств.

Здравствуйте читатели моего сайта сайт, хотел вам рассказать про существующие и новые файловые системы , а так же помочь правильно её выбрать . Ведь выбор зависит от скорости работы, комфортности и здоровья, т.к. когда компьютер зависает, тормозит, не думаю что вам это нравится и правильно влияет на нервы 🙂

Что же такое файловая система и для чего она нужна?

По-простому говоря, это система, которая служит для хранения файлов и папок на жестком диске или на другом носителе, флешке, телефоне, камере и т.д. А так же для упорядочивании файлов и папок: перемещения их, копирования, переименования. Так что за все ваши файлы отвечает эта система, вот почему она так важна.

Если выбрать неправильно файловую систему ваш компьютер может некорректно работать, зависать, виснуть, медленно поступать информация, а ещё хуже возможна порча данных. Это хорошо если не системных, а то появится . А ещё самое главное что если ваш компьютер будет тормозить по этой причине, никакие чистки от мусора так и не помогут!

Виды файловых систем?

Многие файловые системы ушли уже в прошлое, а какие-то держатся на последнем издыхании, т.к. современные технологии растут и растут с каждым днем и вот уже на подходе совсем новая файловая система за которой может и будущее ! Давайте посмотрим с чего все начилось.

Fat 12

Fat — file allocation table в переводе таблица размещения файлов . Сначала файловая система была 12 разрядной, использовала максимум 4096 кластеров. Разрабатывалась она очень давно, ещё в времена DOS и использовалась для дискет и небольших накопителей объемом до 16 мб. Но на замену пришла более усовершенствованная fat16.

Fat 16

Эта файловая система содержала уже 65525 и поддерживала диски размеров 4.2 Гб, в то время это было роскошью и по этому на то время она хорошо справлялась. Но размер файла не мог превышать 2гб, да и по экономичности не самый лучший вариант, чем больше объем файла, тем больше кластер занимает места. По этому объем более 512 мб использовать не выгодно. В таблице показано сколько занимает размер сектора в зависимости от величины носителя.

Хоть на то время система и справлялась, но в дальнейшем появился ряд недостатков:

1. Нельзя работать с жесткими дисками более 8 Гб.

2. Нельзя создавать файлы более 2 Гб.

3. Корневая папка не может содержать более 512 элементов.

4. Невозможность работать с разделами дисков более 2 Гб.

Fat 32

Современные технологии не стоят на месте и со временем и системы fat 16 стало не хватать и на замену пришла fat 32 . Эта система уже могла поддерживать диски размером до 2 терабайт (2048 гигабайт) и уже экономично использовать дисковое пространство за счет кластеров меньшего размера. Из плюсов ещё то что нет ограничений по использованию файлов в корневой папке и более надежна по сравнению с предыдущими версиями. Но самый большой минус для настоящего времени, то что файлы могут повреждаться и хорошо что это не приведет к . И второй главный минус, что сейчас файлы превышают размер более 4 Гб, а система не поддерживает больший объем одного файла. Что зачастую возникают вопросы у пользователей почему я не могу скачать фильм размером в 7гб, хотя на диске свободно 100гб, вот и вся проблема.

По этому минусов и здесь хватает:

1. Файлы объемом более 4 Гб система, не поддерживает.

2. Система подвержена фрагментации файлов из-за чего система начинает тормозить.

3. Подвержена повреждением файлов.

4. На настоящий момент уже существуют диски более 2 Тб.

NTFS

И вот на замену пришла новая система ntfs (New Technology File System) что в переводе файловая система новой технологии , в которой убраны ряд недостатков, но и минусов хватает. Эта система является последней утвержденной, не считая новой, о которой я расскажу чуть ниже. Система появилась ещё в 90х годах, а утверждена в 2001 году при выходе windows xp и используется по сей день. поддерживает диски размером до 18 Тб, круто да? И при фрагментации файлов скорость теряется не так заметно. Безопасность уже достигла хороших высот, при сбое, повреждение информации маловероятна.

Минусы и здесь будут:

1. Потребляемость оперативной памяти, если у вас оперативной памяти меньше 64 мб, то ставить не рекомендуется.

2. При остатке 10% свободного места на жестком диске система начинает заметно тормозить.

3. Работа с малым объемом накопителя может быть затруднена.

Новая ReFS

Совсем новая файловая система ReFS (Resilient File System) в переводе отказоустойчивая файловая система, разработанная для новой операционной системы Windows, за которой может быть и будущее! Со слов разработчиков система должна быть необыкновенно надежной и в скором после доработки, будет поддерживаться на остальных операционных системах. Вот таблица, различий:

Как видно, новая система поддерживает большие объемы дискового пространства, так и большее количество символов в пути и имени файла. Система обещает быть более безопасной в которой должно быть минимум сбоев из-за новой архитектуры и другим способом записи журнала. Пока видны конечно одни плюсы , но на сколько это правда пока не известно. После полного утверждения возможно появится и ряд минусов . Но пока это остается ещё загадкой. Будем надеяться что новая файловая система принесет нам только положительные ощущения от неё.

Какую же файловую систему выбрать?

На хорошо производительный компьютер лучше ставить Ntfs , она подойдет производительнее и безопаснее для этих целей. Не рекомендуется ставить на компьютеры у которых объем жесткого диска менее 32ГБ и оперативной памяти 64 Мб. А старушку fat32 можно ставить на флешки с небольшим объемом, т.к. производительность может быть выше. И ещё один момент, что отформатировав флешку для телефона, цифровой камеры и других электронных устройств в формате ntfs у вас могут быть ошибки, т.к. некоторые устройства могут не поддерживать ntfs или же тормозить с ней и выдавать сбои. Так что перед форматированием убедитесь какая файловая система лучше для вашего устройства.

Существуют и другие виды файловых системы, например для Линуксов XFS , ReiserFS (Reiser3) , JFS (Journaled File System) , ext (extended filesystem) , ext2 (second extended file system) , ext3 (third extended filesystem) , Reiser4 , ext4 , Btrfs (B-tree FS или Butter FS) , Tux2 , Tux3 , Xiafs , ZFS (Zettabyte File System) , но это совсем другая история…

Почему смартфон может не запускать программы с карты памяти? Чем ext4 принципиально отличается от ext3? Почему флешка проживет дольше, если отформатировать ее в NTFS, а не в FAT? В чем главная проблема F2FS? Ответы кроются в особенностях строения файловых систем. О них мы и поговорим.

Введение

Файловые системы определяют способ хранения данных. От них зависит, с какими ограничениями столкнется пользователь, насколько быстрыми будут операции чтения и записи и как долго накопитель проработает без сбоев. Особенно это касается бюджетных SSD и их младших братьев - флешек. Зная эти особенности, можно выжать из любой системы максимум и оптимизировать ее использование для конкретных задач.

Выбирать тип и параметры файловой системы приходится всякий раз, когда надо сделать что-то нетривиальное. Например, требуется ускорить наиболее частые файловые операции. На уровне файловой системы этого можно достичь разными способами: индексирование обеспечит быстрый поиск, а предварительное резервирование свободных блоков позволит упростить перезапись часто изменяющихся файлов. Предварительная оптимизация данных в оперативной памяти снизит количество требуемых операций ввода-вывода.

Увеличить срок безотказной эксплуатации помогают такие свойства современных файловых систем, как отложенная запись, дедупликация и другие продвинутые алгоритмы. Особенно актуальны они для дешевых SSD с чипами памяти TLC, флешек и карт памяти.

Отдельные оптимизации существуют для дисковых массивов разных уровней: например, файловая система может поддерживать упрощенное зеркалирование тома, мгновенное создание снимков или динамическое масштабирование без отключения тома.

Черный ящик

Пользователи в основном работают с той файловой системой, которая предлагается по умолчанию операционной системой. Они редко создают новые дисковые разделы и еще реже задумываются об их настройках - просто используют рекомендованные параметры или вообще покупают предварительно отформатированные носители.

У поклонников Windows все просто: NTFS на всех дисковых разделах и FAT32 (или та же NTFS) на флешках. Если же стоит NAS и в нем используется какая-то другая файловая система, то для большинства это остается за гранью восприятия. К нему просто подключаются по сети и качают файлы, как из черного ящика.

На мобильных гаджетах с Android чаще всего встречается ext4 во внутренней памяти и FAT32 на карточках microSD. Яблочникам же и вовсе без разницы, что у них за файловая система: HFS+, HFSX, APFS, WTFS... для них существуют только красивые значки папок и файлов, нарисованные лучшими дизайнерами. Богаче всего выбор у линуксоидов, но прикрутить поддержку неродных для операционки файловых систем можно и в Windows, и в macOS - об этом чуть позже.

Общие корни

Различных файловых систем создано свыше сотни, но актуальными можно назвать чуть больше десятка. Хотя все они разрабатывались для своих специфических применений, многие в итоге оказались родственными на концептуальном уровне. Они похожи, поскольку используют однотипную структуру представления (мета)данных - B-деревья («би-деревья»).

Как и любая иерархическая система, B-дерево начинается с корневой записи и далее ветвится вплоть до конечных элементов - отдельных записей о файлах и их атрибутах, или «листьев». Основной смысл создания такой логической структуры был в том, чтобы ускорить поиск объектов файловой системы на больших динамических массивах - вроде жестких дисков объемом в несколько терабайт или еще более внушительных RAID-массивов.

B-деревья требуют гораздо меньше обращений к диску, чем другие типы сбалансированных деревьев, при выполнении тех же операций. Достигается это за счет того, что конечные объекты в B-деревьях иерархически расположены на одной высоте, а скорость всех операций как раз пропорциональна высоте дерева.

Как и другие сбалансированные деревья, B-trees имеют одинаковую длину путей от корня до любого листа. Вместо роста ввысь они сильнее ветвятся и больше растут в ширину: все точки ветвления у B-дерева хранят множество ссылок на дочерние объекты, благодаря чему их легко отыскать за меньшее число обращений. Большое число указателей снижает количество самых длительных дисковых операций - позиционирования головок при чтении произвольных блоков.

Концепция B-деревьев была сформулирована еще в семидесятых годах и с тех пор подвергалась различным улучшениям. В том или ином виде она реализована в NTFS, BFS, XFS, JFS, ReiserFS и множестве СУБД. Все они - родственники с точки зрения базовых принципов организации данных. Отличия касаются деталей, зачастую довольно важных. Недостаток у родственных файловых систем тоже общий: все они создавались для работы именно с дисками еще до появления SSD.

Флеш-память как двигатель прогресса

Твердотельные накопители постепенно вытесняют дисковые, но пока вынуждены использовать чуждые им файловые системы, переданные по наследству. Они построены на массивах флеш-памяти, принципы работы которой отличаются от таковых у дисковых устройств. В частности, флеш-память должна стираться перед записью, а эта операция в чипах NAND не может выполняться на уровне отдельных ячеек. Она возможна только для крупных блоков целиком.

Связано это ограничение с тем, что в NAND-памяти все ячейки объединены в блоки, каждый из которых имеет только одно общее подключение к управляющей шине. Не будем вдаваться в детали страничной организации и расписывать полную иерархию. Важен сам принцип групповых операций с ячейками и тот факт, что размеры блоков флеш-памяти обычно больше, чем блоки, адресуемые в любой файловой системе. Поэтому все адреса и команды для накопителей с NAND flash надо транслировать через слой абстрагирования FTL (Flash Translation Layer).

Совместимость с логикой дисковых устройств и поддержку команд их нативных интерфейсов обеспечивают контроллеры флеш-памяти. Обычно FTL реализуется именно в их прошивке, но может (частично) выполняться и на хосте - например, компания Plextor пишет для своих SSD драйверы, ускоряющие запись.

Совсем без FTL не обойтись, поскольку даже запись одного бита в конкретную ячейку приводит к запуску целой серии операций: контроллер отыскивает блок, содержащий нужную ячейку; блок считывается полностью, записывается в кеш или на свободное место, затем стирается целиком, после чего перезаписывается обратно уже с необходимыми изменениями.

Такой подход напоминает армейские будни: чтобы отдать приказ одному солдату, сержант делает общее построение, вызывает бедолагу из строя и командует остальным разойтись. В редкой ныне NOR-памяти организация была спецназовская: каждая ячейка управлялась независимо (у каждого транзистора был индивидуальный контакт).

Задач у контроллеров все прибавляется, поскольку с каждым поколением флеш-памяти техпроцесс ее изготовления уменьшается ради повышения плотности и удешевления стоимости хранения данных. Вместе с технологическими нормами уменьшается и расчетный срок эксплуатации чипов.

Модули с одноуровневыми ячейками SLC имели заявленный ресурс в 100 тысяч циклов перезаписи и даже больше. Многие из них до сих пор работают в старых флешках и карточках CF. У MLC корпоративного класса (eMLC) ресурс заявлялся в пределах от 10 до 20 тысяч, в то время как у обычной MLC потребительского уровня он оценивается в 3–5 тысяч. Память этого типа активно теснит еще более дешевая TLC, у которой ресурс едва дотягивает до тысячи циклов. Удерживать срок жизни флеш-памяти на приемлемом уровне приходится за счет программных ухищрений, и новые файловые системы становятся одним из них.

Изначально производители предполагали, что файловая система неважна. Контроллер сам должен обслуживать недолговечный массив ячеек памяти любого типа, распределяя между ними нагрузку оптимальным образом. Для драйвера файловой системы он имитирует обычный диск, а сам выполняет низкоуровневые оптимизации при любом обращении. Однако на практике оптимизация у разных устройств разнится от волшебной до фиктивной.

В корпоративных SSD встроенный контроллер - это маленький компьютер. У него есть огромный буфер памяти (полгига и больше), и он поддерживает множество методов повышения эффективности работы с данными, что позволяет избегать лишних циклов перезаписи. Чип упорядочивает все блоки в кеше, выполняет отложенную запись, производит дедупликацию на лету, резервирует одни блоки и очищает в фоне другие. Все это волшебство происходит абсолютно незаметно для ОС, программ и пользователя. С таким SSD действительно непринципиально, какая файловая система используется. Внутренние оптимизации оказывают гораздо большее влияние на производительность и ресурс, чем внешние.

В бюджетные SSD (и тем более - флешки) ставят куда менее умные контроллеры. Кеш в них урезан или отсутствует, а продвинутые серверные технологии не применяются вовсе. В картах памяти контроллеры настолько примитивные, что часто утверждается, будто их нет вовсе. Поэтому для дешевых устройств с флеш-памятью остаются актуальными внешние методы балансировки нагрузки - в первую очередь при помощи специализированных файловых систем.

От JFFS к F2FS

Одной из первых попыток написать файловую систему, которая бы учитывала принципы организации флеш-памяти, была JFFS - Journaling Flash File System. Изначально эта разработка шведской фирмы Axis Communications была ориентирована на повышение эффективности памяти сетевых устройств, которые Axis выпускала в девяностых. Первая версия JFFS поддерживала только NOR-память, но уже во второй версии подружилась с NAND.

Сейчас JFFS2 имеет ограниченное применение. В основном она все так же используется в дистрибутивах Linux для встраиваемых систем. Ее можно найти в маршрутизаторах, IP-камерах, NAS и прочих завсегдатаях интернета вещей. В общем, везде, где требуется небольшой объем надежной памяти.

Дальнейшей попыткой развития JFFS2 стала LogFS, у которой индексные дескрипторы хранились в отдельном файле. Авторы этой идеи - сотрудник немецкого подразделения IBM Йорн Энгель и преподаватель Оснабрюкского университета Роберт Мертенс. Исходный код LogFS выложен на GitHub . Судя по тому, что последнее изменение в нем было сделано четыре года назад, LogFS так и не обрела популярность.

Зато эти попытки подстегнули появление другой специализированной файловой системы - F2FS. Ее разработали в корпорации Samsung, на долю которой приходится немалая часть производимой в мире флеш-памяти. В Samsung делают чипы NAND Flash для собственных устройств и по заказу других компаний, а также разрабатывают SSD с принципиально новыми интерфейсами вместо унаследованных дисковых. Создание специализированной файловой системы с оптимизацией для флеш-памяти было с точки зрения Samsung давно назревшей необходимостью.

Четыре года назад, в 2012 году, в Samsung создали F2FS (Flash Friendly File System). Ее идея хороша, но реализация оказалась сыроватой. Ключевая задача при создании F2FS была проста: снизить число операций перезаписи ячеек и распределить нагрузку на них максимально равномерно. Для этого требуется выполнять операции с несколькими ячейками в пределах того же блока одновременно, а не насиловать их по одной. Значит, нужна не мгновенная перезапись имеющихся блоков по первому запросу ОС, а кеширование команд и данных, дозапись новых блоков на свободное место и отложенное стирание ячеек.

Сегодня поддержка F2FS уже официально реализована в Linux (а значит, и в Android), но особых преимуществ на практике она пока не дает. Основная особенность этой файловой системы (отложенная перезапись) привела к преждевременным выводам о ее эффективности. Старый трюк с кешированием даже одурачивал ранние версии бенчмарков, где F2FS демонстрировала мнимое преимущество не на несколько процентов (как ожидалось) и даже не в разы, а на порядки. Просто драйвер F2FS рапортовал о выполнении операции, которую контроллер только планировал сделать. Впрочем, если реальный прирост производительности у F2FS и невелик, то износ ячеек определенно будет меньше, чем при использовании той же ext4. Те оптимизации, которые не сможет сделать дешевый контроллер, будут выполнены на уровне самой файловой системы.

Экстенты и битовые карты

Пока F2FS воспринимается как экзотика для гиков. Даже в собственных смартфонах Samsung все еще применяется ext4. Многие считают ее дальнейшим развитием ext3, но это не совсем так. Речь идет скорее о революции, чем о преодолении барьера в 2 Тбайт на файл и простом увеличении других количественных показателей.

Когда компьютеры были большими, а файлы - маленькими, адресация не представляла сложностей. Каждому файлу выделялось энное количество блоков, адреса которых заносились в таблицу соответствия. Так работала и файловая система ext3, остающаяся в строю до сих пор. А вот в ext4 появился принципиально другой способ адресации - экстенты.

Экстенты можно представить как расширения индексных дескрипторов в виде обособленных наборов блоков, которые адресуются целиком как непрерывные последовательности. Один экстент может содержать целый файл среднего размера, а для крупных файлов достаточно выделить десяток-другой экстентов. Это куда эффективнее, чем адресовать сотни тысяч мелких блоков по четыре килобайта.

Поменялся в ext4 и сам механизм записи. Теперь распределение блоков происходит сразу за один запрос. И не заранее, а непосредственно перед записью данных на диск. Отложенное многоблочное распределение позволяет избавиться от лишних операций, которыми грешила ext3: в ней блоки для нового файла выделялись сразу, даже если он целиком умещался в кеше и планировался к удалению как временный.


Диета с ограничением FAT

Помимо сбалансированных деревьев и их модификаций, есть и другие популярные логические структуры. Существуют файловые системы с принципиально другим типом организации - например, линейным. Как минимум одной из них ты наверняка часто пользуешься.

Загадка

Отгадай загадку: в двенадцать она начала полнеть, к шестнадцати была глуповатой толстушкой, а к тридцати двум стала жирной, так и оставшись простушкой. Кто она?

Правильно, это история про файловую систему FAT. Требования совместимости обеспечили ей дурную наследственность. На дискетах она была 12-разрядной, на жестких дисках - поначалу 16-битной, а до наших дней дошла уже как 32-разрядная. В каждой следующей версии увеличивалось число адресуемых блоков, но в самой сути ничего не менялось.

Популярная до сих пор файловая система FAT32 появилась аж двадцать лет назад. Сегодня она все так же примитивна и не поддерживает ни списки управления доступом, ни дисковые квоты, ни фоновое сжатие, ни другие современные технологии оптимизации работы с данными.

Зачем же FAT32 нужна в наши дни? Все так же исключительно для обеспечения совместимости. Производители справедливо полагают, что раздел с FAT32 сможет прочитать любая ОС. Поэтому именно его они создают на внешних жестких дисках, USB Flash и картах памяти.

Как освободить флеш-память смартфона

Карточки microSD(HC), используемые в смартфонах, по умолчанию отформатированы в FAT32. Это основное препятствие для установки на них приложений и переноса данных из внутренней памяти. Чтобы его преодолеть, нужно создать на карточке раздел с ext3 или ext4. На него можно перенести все файловые атрибуты (включая владельца и права доступа), поэтому любое приложение сможет работать так, словно запустилось из внутренней памяти.

Windows не умеет делать на флешках больше одного раздела, но для этого можно запустить Linux (хотя бы в виртуалке) или продвинутую утилиту для работы с логической разметкой - например, MiniTool Partition Wizard Free . Обнаружив на карточке дополнительный первичный раздел с ext3/ext4, приложение Link2SD и аналогичные ему предложат куда больше вариантов, чем в случае с одним разделом FAT32.


Как еще один аргумент в пользу выбора FAT32 часто называют отсутствие в ней журналирования, а значит, более быстрые операции записи и меньший износ ячеек памяти NAND Flash. На практике же использование FAT32 приводит к обратному и порождает множество других проблем.

Флешки и карты памяти как раз быстро умирают из-за того, что любое изменение в FAT32 вызывает перезапись одних и тех же секторов, где расположены две цепочки файловых таблиц. Сохранил веб-страничку целиком, и она перезаписалась раз сто - с каждым добавлением на флешку очередной мелкой гифки. Запустил портейбл-софт? Он насоздавал временных файлов и постоянно меняет их во время работы. Поэтому гораздо лучше использовать на флешках NTFS с ее устойчивой к сбоям таблицей $MFT. Мелкие файлы могут храниться прямо в главной файловой таблице, а ее расширения и копии записываются в разные области флеш-памяти. Вдобавок благодаря индексации на NTFS поиск выполняется быстрее.

INFO

Для FAT32 и NTFS теоретические ограничения по уровню вложенности не указаны, но на практике они одинаковые: в каталоге первого уровня можно создать только 7707 подкаталогов. Любители поиграть в матрешки оценят.

Другая проблема, с которой сталкивается большинство пользователей, - на раздел с FAT32 невозможно записать файл больше 4 Гбайт. Причина заключается в том, что в FAT32 размер файла описывается 32 битами в таблице размещения файлов, а 2^32 (минус единица, если быть точным) как раз дают четыре гига. Получается, что на свежекупленную флешку нельзя записать ни фильм в нормальном качестве, ни образ DVD.

Копирование больших файлов еще полбеды: при попытке сделать это ошибка хотя бы видна сразу. В других ситуациях FAT32 выступает в роли бомбы замедленного действия. Например, ты скопировал на флешку портейбл-софт и на первых порах пользуешься им без проблем. Спустя длительное время у одной из программ (допустим, бухгалтерской или почтовой) база данных раздувается, и... она просто перестает обновляться. Файл не может быть перезаписан, поскольку достиг лимита в 4 Гбайт.

Менее очевидная проблема заключается в том, что в FAT32 дата создания файла или каталога может быть задана с точностью до двух секунд. Этого недостаточно для многих криптографических приложений, использующих временные метки. Низкая точность атрибута «дата» - еще одна причина того, почему FAT32 не рассматривается как полноценная файловая система с точки зрения безопасности. Однако ее слабые стороны можно использовать и в своих целях. Например, если скопировать на том FAT32 любые файлы с раздела NTFS, то они очистятся от всех метаданных, а также унаследованных и специально заданных разрешений. FAT просто не поддерживает их.

exFAT

В отличие от FAT12/16/32, exFAT разрабатывалась специально для USB Flash и карт памяти большого (≥ 32 Гбайт) объема. Extended FAT устраняет упомянутый выше недостаток FAT32 - перезаписывание одних и тех же секторов при любом изменении. Как у 64-разрядной системы, у нее нет практически значимых лимитов на размер одного файла. Теоретически он может иметь длину в 2^64 байт (16 Эбайт), а карточки такого объема появятся нескоро.

Еще одно принципиальное отличие exFAT - поддержка списков контроля доступа (ACL). Это уже не та простушка из девяностых, однако внедрению exFAT мешает закрытость формата. Поддержка exFAT полноценно и легально реализована только в Windows (начиная с XP SP2) и OS X (начиная с 10.6.5). В Linux и *BSD она поддерживается либо с ограничениями, либо не вполне законно. Microsoft требует лицензировать использование exFAT, и в этой области много правовых споров.

Btrfs

Еще один яркий представитель файловых систем на основе B-деревьев называется Btrfs. Эта ФС появилась в 2007 году и изначально создавалась в Oracle с прицелом на работу с SSD и RAID. Например, ее можно динамически масштабировать: создавать новые индексные дескрипторы прямо в работающей системе или разделять том на подтома без выделения им свободного места.

Реализованный в Btrfs механизм копирования при записи и полная интеграция с модулем ядра Device mapper позволяют делать практически мгновенные снапшоты через виртуальные блочные устройства. Предварительное сжатие данных (zlib или lzo) и дедупликация ускоряют основные операции, заодно продлевая время жизни флеш-памяти. Особенно это заметно при работе с базами данных (достигается сжатие в 2–4 раза) и мелкими файлами (они записываются упорядоченно крупными блоками и могут храниться непосредственно в «листьях»).

Также Btrfs поддерживает режим полного журналирования (данных и метаданных), проверку тома без размонтирования и множество других современных фич. Код Btrfs опубликован под лицензией GPL. Эта файловая система поддерживается в Linux как стабильная начиная с версии ядра 4.3.1.

Бортовые журналы

Практически все более-менее современные файловые системы (ext3/ext4, NTFS, HFSX, Btrfs и другие) относят к общей группе журналируемых, поскольку они ведут учет вносимых изменений в отдельном логе (журнале) и сверяются с ним в случае сбоя при выполнении дисковых операций. Однако степень подробности ведения журналов и отказоустойчивость у этих файловых систем разные.

Еxt3 поддерживает три режима ведения журнала: с обратной связью, упорядоченный и полное журналирование. Первый режим подразумевает запись только общих изменений (метаданных), выполняемую асинхронно по отношению к изменениям самих данных. Во втором режиме выполняется та же запись метаданных, но строго перед внесением любых изменений. Третий режим эквивалентен полному журналированию (изменений как в метаданных, так и в самих файлах).

Целостность данных обеспечивает только последний вариант. Остальные два лишь ускоряют выявление ошибок в ходе проверки и гарантируют восстановление целостности самой файловой системы, но не содержимого файлов.

Журналирование в NTFS похоже на второй режим ведения лога в ext3. В журнал записываются только изменения в метаданных, а сами данные в случае сбоя могут быть утеряны. Такой метод ведения журнала в NTFS задумывался не как способ достижения максимальной надежности, а лишь как компромисс между быстродействием и отказоустойчивостью. Именно поэтому люди, привыкшие к работе с полностью журналируемыми системами, считают NTFS псевдожурналируемой.

Реализованный в NTFS подход в чем-то даже лучше используемого по умолчанию в ext3. В NTFS дополнительно периодически создаются контрольные точки, которые гарантируют выполнение всех отложенных ранее дисковых операций. Контрольные точки не имеют ничего общего с точками восстановления в \System Volume Infromation\ . Это просто служебные записи в логе.

Практика показывает, что такого частичного журналирования NTFS в большинстве случаев хватает для беспроблемной работы. Ведь даже при резком отключении питания дисковые устройства не обесточиваются мгновенно. Блок питания и многочисленные конденсаторы в самих накопителях обеспечивают как раз тот минимальный запас энергии, которого хватает на завершение текущей операции записи. Современным SSD при их быстродействии и экономичности такого же количества энергии обычно хватает и на выполнение отложенных операций. Попытка же перейти на полное журналирование снизила бы скорость большинства операций в разы.

Подключаем сторонние ФС в Windows

Использование файловых систем лимитировано их поддержкой на уровне ОС. Например, Windows не понимает ext2/3/4 и HFS+, а использовать их порой надо. Сделать это можно, добавив соответствующий драйвер.

WARNING

Большинство драйверов и плагинов для поддержки сторонних файловых систем имеют свои ограничения и не всегда работают стабильно. Они могут конфликтовать с другими драйверами, антивирусами и программами виртуализации.

Открытый драйвер для чтения и записи на разделы ext2/3 с частичной поддержкой ext4. В последней версии поддерживаются экстенты и разделы объемом до 16 Тбайт. Не поддерживаются LVM, списки контроля доступа и расширенные атрибуты.


Существует бесплатный плагин для Total Commander. Поддерживает чтение разделов ext2/3/4.


coLinux - открытый и бесплатный порт ядра Linux. Вместе с 32-битным драйвером он позволяет запускать Linux в среде Windows с 2000 по 7 без использования технологий виртуализации. Поддерживает только 32-битные версии. Разработка 64-битной модификации была отменена. сoLinux позволяет в том числе организовать из Windows доступ к разделам ext2/3/4. Поддержка проекта приостановлена в 2014 году.

Возможно, в Windows 10 уже есть встроенная поддержка характерных для Linux файловых систем, просто она скрыта. На эти мысли наводит драйвер уровня ядра Lxcore.sys и сервис LxssManager, который загружается как библиотека процессом Svchost.exe. Подробнее об этом смотри в докладе Алекса Ионеску «Ядро Линукс, скрытое внутри Windows 10», с которым он выступил на Black Hat 2016.


ExtFS for Windows - платный драйвер, выпускаемый компанией Paragon. Он работает в Windows с 7 по 10, поддерживает доступ к томам ext2/3/4 в режиме чтения и записи. Обеспечивает почти полную поддержку ext4 в Windows.

HFS+ for Windows 10 - еще один проприетарный драйвер производства Paragon Software. Несмотря на название, работает во всех версиях Windows начиная с XP. Предоставляет полный доступ к файловым системам HFS+/HFSX на дисках с любой разметкой (MBR/GPT).

WinBtrfs - ранняя разработка драйвера Btrfs для Windows. Уже в версии 0.6 поддерживает доступ к томам Btrfs как на чтение, так и на запись. Умеет обрабатывать жесткие и символьные ссылки, поддерживает альтернативные потоки данных, ACL, два вида компрессии и режим асинхронного чтения/записи. Пока WinBtrfs не умеет использовать mkfs.btrfs, btrfs-balance и другие утилиты для обслуживания этой файловой системы.

Возможности и ограничения файловых систем: сводная таблица

Фай-ло-вая сис-те-ма Мак-си-маль-ный раз-мер тома Пре-дель-ный раз-мер одного файла Дли-на собст-вен-ного имени файла Дли-на пол-но-го имени файла (вклю-чая путь от корня) Пре-дель-ное число файлов и/или ката-ло-гов Точ-ность ука-за-ния даты файла/ката-ло-га Права дос-ту-па Жёсткие ссылки Сим-воль-ные ссылки Мгно-вен-ные снимки (snap-shots) Сжа-тие дан-ных в фоне Шиф-ро-ва-ние дан-ных в фоне Деду-пли-ка-ция дан-ных
FAT16 2 ГБ секторами по 512 байт или 4 ГБ кластерами по 64 КБ 2 ГБ 255 байт с LFN - - - - - - - - - -
FAT32 8 ТБ секторами по 2 КБ 4 ГБ (2^32 - 1 байт) 255 байт с LFN до 32 подкаталогов с CDS 65460 10 мс (создание) / 2 с (изменение) нет нет нет нет нет нет нет
exFAT ≈ 128 ПБ (2^32-1 кластеров по 2^25-1 байт) теоретически / 512 ТБ из-за сторонних ограничений 16 ЭБ (2^64 - 1 байт) 2796202 в каталоге 10 мс ACL нет нет нет нет нет нет
NTFS 256 ТБ кластерами по 64 КБ или 16 ТБ кластерами по 4 КБ 16 ТБ (Win 7) / 256 ТБ (Win 8) 255 символов Unicode (UTF-16) 32760 символов Unicode, но не более 255 символов в каждом элементе 2^32-1 100 нс ACL да да да да да да
HFS+ 8 ЭБ (2^63 байт) 8 ЭБ 255 символов Unicode (UTF-16) отдельно не ограничивается 2^32-1 1 с Unix, ACL да да нет да да нет
APFS 8 ЭБ (2^63 байт) 8 ЭБ 255 символов Unicode (UTF-16) отдельно не ограничивается 2^63 1 нс Unix, ACL да да да да да да
Ext3 32 ТБ (теоретически) / 16 ТБ кластерами по 4 КБ (из-за ограничений утилит e2fs programs) 2 ТБ (теоретически) / 16 ГБ у старых программ 255 символов Unicode (UTF-16) отдельно не ограничивается - 1 с Unix, ACL да да нет нет нет нет
Ext4 1 ЭБ (теоретически) / 16 ТБ кластерами по 4 КБ (из-за ограничений утилит e2fs programs) 16 ТБ 255 символов Unicode (UTF-16) отдельно не ограничивается 4 млрд. 1 нс POSIX да да нет нет да нет
F2FS 16 ТБ 3,94 ТБ 255 байт отдельно не ограничивается - 1 нс POSIX, ACL да да нет нет да нет
BTRFS 16 ЭБ (2^64 - 1 байт) 16 ЭБ 255 символов ASCII 2^17 байт - 1 нс POSIX, ACL да да да да да да

(2010 год) с некоторыми дополнениями и уточнениями.

Журналирование

Прежде, чем говорить о файловых системах — давайте кратко рассмотрим понятие «журналирование «.

Журналирование в том или ином виде применяется практически во всех современных файловых системах.

Журналирование используется только при операциях записи на диск, и является своеобразным буфером для всех таких операций. Этот подход помогает решить проблемы, которые возникают во время операции записи на диск, при которых компьютер выключается, например — из-за отключения электричества. Без журналирования в таких случаях невозможно выяснить — какие файлы были записаны — а какие не были или были записаны частично.

При использовании журналирования — файл сначала записывается в журнал (или «лог»). После этого — файл записывается на жесткий диск а потом удаляется из журнала, после чего операция записи считается завершённой. Если во время записи выключилось питание — то после включения системы файловая система может проверить журнал, и найти незавершённые операции.

Самая главная проблема при использовании журналирования — это то, что для её использования требуются дополнительные ресурсы системы. Для того, что бы уменьшить такие накладные расходы — журналируемые файловые системы пишут в журнал не весь файл целиком — а только определённые метаданные.

Файловые системы Ext

Ext

Означает «Extended » (расширенная) файловая система, и она являлась первой, которая была разработана специально для Linux -систем. Всего на сегодняшний день существует 4 файловые системы Ext . Самая первая из них — просто Ext — являлась серьёзным обновлением ФС ОС Minix .

Характеристики Ext :

  • максимальный размер файла: 2GB;
  • максимальный размер раздела: 2GB;

Разработчик — , а первая версия появилась в 1992 году.

Мы не будем её рассматривать, т.к. скорее всего вы уже никогда с ней не столкнётесь.

Ext2

— не журналируемая ФС, выпущенная в 1993 году, основная задача для которой была поддержка устройств размером до 2 Террабайт. Т.к. у Ext2 нет журналирования — она выполняет намного меньше операций записи на диск, что сказывается на быстродействии и области её применения.

Характеристики:

  • максимальный размер файла: 16GB — 2TB;
  • максимальный размер раздела: 2 — 32 TB;
  • максимальный размер имени 255 символов.
  • в силу низкого количества операций записи-удаления данных — является идеальной для различных флеш-накопителей;
  • в то же время современные SSD -диски имеют улучшенные показатели их жизненного цикла (изноустойчивости элементов накопителя) и некоторые другие особенности, которые нивелируют недостатки Ext2 как не журналируемой ФС.

Ext3

— появилась в 2001 году, вместе с выпуском Linux Kernel 2.4.15. Фактически является той же Ext2 , но с поддержкой журналирования. Основной целью Ext3 была возможность её обратной совместимости с Ext2 без необходимости переформатирвоания разделов. К преимуществам же можно отнести тот факт, что большая часть тестирования, багфиксов и т.д. для Ext3 была то же, что и в Ext2 , что сделало Ext3 более стабильной и быстрой ФС.

Характеристики:

  • максимальный размер файла: 16GB — 2TB (в зависимости от размера блока);
  • максимальный размер раздела: 2 — 32 TB (в зависимости от размера блока);
  • подходит, если у вас используется Ext2 , и вы хотите исподьзовать журналирование;
  • в силу своей производительности и стабильности — вероятно, будет наиболее подходящей ФС для серверов баз данных;
  • возможно не лучший выбор для серверов, т.к. не поддерживает создание снимков (shapshot ) ФС и сложностей с восстановлением удалённых файлов.

Ext4

— как и Ext3 имеет обратную совместимость с предыдущими версиями ФС. Собственно говоря, вы можете смонтировать Ext2 или Ext3 как Ext4 -и при определённых условиях добиться большей производительности. Вы так же можете смонтировать Ext4 как Ext3 без каких-либо побочных эффектов.

Ext4 — стабильная версия была выпущена в 2008 году. Является первой ФС из «семейства» Ext , использующая механизм « «, который позволяет добиться меньшей фрагментации файлов и увеличить общую производительность файловой системы. Кроме того — в Ext4 реализован механизм отложенной записи ( ), который так же уменьшает фрагментацию диска и снижает нагрузку на CPU. С другой стороны — хотя механизм отложенной записи и используется во многих ФС — но в силу сложности своей реализации он повышает вероятность утери данных. См. для более подробной информации.

Характеристики:

  • максимальный размер файла: 16 TB;
  • максимальный размер имени файла: 255 символов.
  • наилучший выбор для SSD ;
  • наилучшая производительность по сравнению с предыдущими Etx -системами;
  • она так же отлично подходит в качестве файловой системы для серверов баз данных, хотя сама система и моложе Ext3 .

BtrFS

— разработана компание Oracle в 2007 году. По своей схеме схожа с ReiserFS , основной принцип её работы — это т.н. . BtrFS позволяет динамически выделять inode, создавать снимки ФС во время её работы, выполнять прозрачную компрессию файлов и делать дефрагментацию в рабочем режиме.

Хотя стабильная версия BtrFS ещё не включена в большинство дистрибутивов Linux (на сегодняшний день, судя по посту — только SUSE и Oracle Linux ) — она вполне может заменить Ext3/4 в обозримом будущем и уже предоставляет возможности по конвертации Ext3/4 в BtrFS . Кроме того, стоит упомянуть, что один из разработчиков Ext , сказал, что «BtrFS — это шаг в будущее».

Характеристики:

  • максимальный размер раздела: 16 EB;
  • максимальный размер имени файла: 255 символов.
  • в силу производительности, снимкам и другим возможностям — BtrFS является отличной файловой системой для сервера;
  • Oracle так же разрабатывает замену для NFS и CIFS , которая называется CRFS и которая призвана улучшить производительность для файловых хранилищ с BtrFS ;
  • тесты производительности показали отставание BtrFS от Ext4 на твердотельных носителях, таких как SSD и при операциях со сравнительно небольшими файлами:

ReizerFS

— представленная в 2001 году реализовала в себе многие возможности, которые никогда не смогут быть реализованы в Ext *. В 2004 на замену ReizerFS была выпущена ФС Reizer4 .

В то же время — разработка Reizer4 продвигается очень медленно, и до сих пор имеет ограниченную поддержку (?) в ядре Linux . В настоящее время реально доступной для использования остаётся только ReiserFS .

Характеристики:

  • максимальный размер файла: 1 EB ();
  • максимальный размер раздела: 16 TB;
  • максимальный размер имени файла: 4032 байт, но ограничено до 255 символов .
  • отличная производительность при работе с небольшими файлами, такими как файлы логов и отлично подойдёт для серверов баз данных или почтовых серверов;
  • ReiserFS хорошо поддаётся увеличению размера тома — но не поддерживает его уменьшение и шифрование на уровне ФС;
  • будущее Reiser4 пока остаётся под вопросом и пока BtrFS остаётся предпочтительным (?) выбором между этими двумя ФС.

ZFS

— стоит упомянуть тут, т.к. она так же разрабатывалась компание Oracle и имеет возможности, схожие с BtrFS и ReizerFS . Она так же стала весьма известна после того, как компания Apple о намерении использовать её в качестве ФС по умолчанию. Первый релиз ZFS состоялся в 2005 году.

В силу ограничений из-за лицензии — ZFS не может быть включена в ядро Linux , однако её поддержка возможна с помощью механизма Linux’s (FUSE ).

Характеристики:

  • максимальный размер файла: 16 EB ();
  • максимальный размер раздела: 256 ZiB (Zebibyte);
  • максимальный размер имени файла: 255 байт.
  • показыавет отличную производительность при работе с большими дисковыми массивами;
  • поддерживает возможности по объединению дисков в массивы, созданию снимков ФС, и работе со «расслоённым отображением» ( ) данных;
  • возможны сложности при попытке установки и использования в Linux -системах, в силу необходимости использования FUSE .

Swap

Swap — не является файловой системой вообще. Файл или раздел со swap -ом используется системой виртуальной памяти ядра и не имеет структуры файловой системы вообще. Её нельзя примонтировать и считать с неё данные, т.к. swap используется исключительно ядром Linux для записи страниц памяти не диск. Как правило — swap используется только в том случае, когда ОС испытывает недостаток в свободной RAM и «сбрасывает» часть данных из памяти в swap для её освобождения.