Меню
Бесплатно
Главная  /  ПО  /  Курсовая работа: Беспроводные телекоммуникационные системы. Основные сведения о телекоммуникационных системах Системы телекоммуникаций

Курсовая работа: Беспроводные телекоммуникационные системы. Основные сведения о телекоммуникационных системах Системы телекоммуникаций

Важной сферой деятельности человека является информационная инфраструктура, благодаря чему развивается множество необходимых сфер. Сначала для этого использовалась телеграфная сеть, после чего стали появляться телефоны, радио, телевидение, компьютер. Любые сведения, созданные в электронном виде, могут поступить до места назначения без специалиста.

Связь субъектов страны, международная связь работает на основе многоканальных телекоммуникационных систем. Для этого применяются аналоговые и цифровые устройства. С их помощью передается аудио, видео, мультимедиа. Поэтому людям доступен выход в Интернет, сотовая множество других услуг. Именно для этого необходимо подготавливать специалистов для работы в этой сфере.

Особенности профессии

Если выпускник закончит обучение по специальности «многоканальные телекоммуникационные системы», кем работать ему? Можно устраиваться на предприятия по вакансии «техник». В обязанности сотрудника входит обеспечение определенной территории связью, телевидением, радиовещанием.

Техник работает с что требуется для функционирования систем передачи. Выполняется реконструкция линий и установка новейшего оборудования. Главное место в техническом оснащении имеет волоконно-оптическая технология, с помощью которой происходит увеличение скорости передачи, качества сети.

Обучение сотрудников

Профессии «многоканальные телекоммуникационные системы» будущих специалистов обучают с помощью прикладных дисциплин. Им нужно разбираться в установке и эксплуатации кабельных и цифровых систем передачи данных.

На лекциях изучаются технологии программно-аппаратного шифрования данных для защиты информации. С повышенным профилем подготовки требуется освоение учебной программы управленской деятельности и менеджмента организации. По специальности «многоканальные телекоммуникационные системы» обучают колледжи и институты различных городов России.

Что умеют выпускники?

Специалистами должна производиться эксплуатация многоканальных телекоммуникационных систем. Обязательна работа по информационной безопасности сетей. Важной деятельностью является участие в проведении производственной работы организации.

Сотрудники выполняют работу нескольких должностей служащих. Они производят конвергенцию технологий и сервисов систем электросвязи. Одной из главных сфер является продвижение услуг сетей. Если выпускник окончил обучение по специальности «многоканальные телекоммуникационные системы», кем работать ему и где? Техники требуются в государственных и коммерческих предприятиях.

Обязанности специалистов

Техники производят монтаж и обслуживание Обязателен мониторинг и диагностика систем. Работниками осуществляется устранение последствий аварий и дефектов оборудования, определяются способы восстановления функционирования.

На предприятиях техники осуществляют измерения показателей оборудования. Ими производится установка и профессиональное обслуживание компьютерных сетей. Работник берет в обязанность производство администрирования сетевого оборудования, установки, настройки доступа.

Техник взаимодействует с сетевыми протоколами. Он следит за функционированием оборудования сетей. В профессиональной деятельности им применяются проверенные средства защиты информации. К прочим обязанностям относят:

  • анализ работы систем для выявления неполадок;
  • обеспечение безопасного администрирования;
  • участие в планировании работы;
  • мониторинг новых систем;
  • проведение маркетинговых исследований.

Профессионалы строят и эксплуатируют системы передачи информации, функционируют на автоматических станциях. Выпускники по специальности «многоканальные телекоммуникационные системы» заняты в линейно-аппаратных цехах, радиорелейных отделах, центрах связи. Техник получает необходимые навыки.

Заработная плата и перспективы

Если выпускник получил специальность «многоканальные телекоммуникационные системы», зарплата сначала у него будет около 20 000 рублей. При этом работник должен знать и уметь выполнять монтаж и подключение телефонного оборудования, настраивать мини-АТС, Интернет.

Сотруднику необходимо постоянно совершенствоваться, повышая уровень знаний и умений. Такой работник всегда будет востребованным, что позволит увеличить личные доходы. Для получения большого заработка необходимо иметь богатый опыт в обслуживании систем связи, монтаже оборудования, формировании документации. Работать можно в профильных государственных и коммерческих предприятиях.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования Российской Федерации

Дальневосточный государственный технический университет

(ДВПИ им. В.В.Куйбышева)

Кафедра конструирования и производства радиоаппаратуры

Телекоммуникационные системы

Выполнила Ракипова Д.Р.

студент группы Пи(б)-21

Проверила Себто Т.А.

Основные вопросы

1. Что такое телекоммуникационные системы?

2. Что такое информационная система?

3. Какова её роль?

4. Какие характеристики информационных системы вы знаете?

5. Какие классификации информационных системы вы знаете?

6. Что такое канал связи?

7. Какие разновидности каналов связи существуют?

8. Что такое информационная сеть?

9. Каким образом можно организовать доступ к информационным сетям?

телекоммуникационный информационный сеть связь

Введение

Заключение

Основные понятия

Список литературы

Введение

XXI век без преувеличения можно назвать веком информационных технологий. Понятие информационные технологии включает в себя множество аспектов. Одной из важнейших частей данного направления является непосредственно передача информации посредством информационных сетей.

Технологии телекоммуникаций - это принципы организации современных аналоговых и цифровых систем и сетей связи, включая компьютерные и INTERNET-сети.

Средства телекоммуникаций - это совокупность технических устройств, алгоритмов и программного обеспечения, позволяющих передавать и принимать речь, информационные данные, мультимедийную информацию при помощи электрических и электромагнитных колебаний по кабельным, волоконно-оптическим и радиотехническим каналам в различных диапазонах волн. Это устройства преобразования информации, ее кодирования и декодирования, модуляции и демодуляции, это современные компьютерные технологии обработки.

1. Характеристики и классификация информационных сетей

Современные телекоммуникационные технологии основаны на использовании информационных сетей.

Отличительная особенность коммуникационной сети - большие расстояния между пунктами по сравнению с геометрическими размерами участков пространства, занимаемых пунктами.

Вычислительная сеть - информационная сеть, в состав которой входит вычислительное оборудование. Компонентами вычислительной сети могут быть ЭВМ и периферийные устройства, являющиеся источниками и приемниками данных, передаваемых по сети. Эти компоненты составляют оконечное оборудование данных (ООД или DTE - Data Terminal Equipment). В качестве ООД могут выступать ЭВМ, принтеры, плоттеры и другое вычислительное, измерительное и исполнительное оборудование автоматических и автоматизированных систем. Собственно пересылка данных происходит с помощью сред и средств, объединяемых под названием среда передачи данных.

Подготовка данных, передаваемых или получаемых ООД от среды передачи данных, осуществляется функциональным блоком, называемым аппаратурой окончания канала данных (АКД или DCE - Data Circuit-Terminating Equipment). АКД может быть конструктивно отдельным или встроенным в ООД блоком. ООД и АКД вместе представляют собой станцию данных, которую часто называют узлом сети. Примером АКД может служить модем.

Вычислительные сети классифицируются по ряду признаков.

В зависимости от расстояний между связываемыми узлами различают вычислительные сети:

Территориальные? охватывающие значительное географическое пространство; среди территориальных сетей можно выделить сети региональные и глобальные, имеющие соответственно региональные или глобальные масштабы; региональные сети иногда называют сетями MAN (Metropolitan Area Network), а общее англоязычное название для территориальных сетей - WAN (Wide Area Network);

Локальные (ЛВС) ? охватывающие ограниченную территорию (обычно в пределах удаленности станций не более чем на несколько десятков или сотен метров друг от друга, реже на 1...2 км); локальные сети обозначают LAN (Local Area Network);

Корпоративные (масштаба предприятия) ? совокупность связанных между собой ЛВС, охватывающих территорию, на которой размещено одно предприятие или учреждение в одном или нескольких близко расположенных зданиях. Локальные и корпоративные вычислительные сети - основной вид вычислительных сетей, используемых в системах автоматизированного проектирования (САПР).

Особо выделяют единственную в своем роде глобальную сеть Internet (реализованная в ней информационная служба World Wide Web (WWW) переводится на русский язык как всемирная паутина); это сеть сетей со своей технологией. В Internet существует понятие интрасетей (Intranet) - корпоративных сетей в рамках Internet.

Различают интегрированные сети, неинтегрированные сети и подсети. Интегрированная вычислительная сеть (интерсеть) представляет собой взаимосвязанную совокупность многих вычислительных сетей, которые в интерсети называются подсетями.

В автоматизированных системах крупных предприятий подсети включают вычислительные средства отдельных проектных подразделений. Интерсети нужны для объединения таких подсетей, а также для объединения технических средств автоматизированных систем проектирования и производства в единую систему комплексной автоматизации (CIM - Computer Integrated Manufacturing). Обычно интерсети приспособлены для различных видов связи: телефонии, электронной почты, передачи видеоинформации, цифровых данных и т.п., и в этом случае они называются сетями интегрального обслуживания. Развитие интерсетей заключается в разработке средств сопряжения разнородных подсетей и стандартов для построения подсетей, изначально приспособленных к сопряжению. Подсети в интерсетях объединяются в соответствии с выбранной топологией с помощью блоков взаимодействия.

2. Многоуровневая архитектура информационных сетей

В общем случае для функционирования сетей ЭВМ необходимо решить две проблемы:

Передать данные по назначению в правильном виде и своевременно;

Поступившие по назначению данные пользователю должны быть распознаваемы и иметь надлежащую форму для их правильного использования.

Первая проблема связана с задачами маршрутизации и обеспечивается сетевыми протоколами (протоколами низкого уровня).

Вторая проблема вызвана использованием в сетях разных типов ЭВМ, с разными кодами и синтаксисом языка. Эта часть проблемы решается путем введения протоколов высокого уровня.

Таким образом, полная архитектура, ориентированная на оконечного пользователя, включает в себя оба протокола.

Разработанная эталонная модель взаимодействия открытых систем (ВОС) поддерживает концепцию, при которой каждый уровень предоставляет услуги вышестоящему уровню и базируется на основе нижележащего уровня и использует его услуги. Каждый уровень выполняет определенную функцию по передачи данных. Хотя они должны работать в строгой очередности, но каждый из уровней допускает несколько вариантов. Рассмотрим эталонную модель. Она состоит из 7 уровней и представляет собой многоуровневую архитектуру, которая описывается стандартными протоколами и процедурами.

Три нижних уровня предоставляют сетевые услуги. Протоколы, реализующие эти уровни, должны быть предусмотрены в каждом узле сети.

Четыре верхних уровня предоставляют услуги самим оконечным пользователям и таким образом, связаны с ними, а не с сетью.

Физический уровень. В этой части модели определяются физические, механические и электрические характеристики линий связи, составляющих ЛВС (кабелей, разъемов, оптоволоконных линий и т.п.). Можно считать, что этот уровень отвечает за аппаратное обеспечение. Хотя функции других уровней могут быть реализованы в соответствующих микросхемах, но все же они относятся к ПО. Функции физического уровня заключаются в гарантии того, что символы, поступающие в физическую среду передачи на одном конце канала, достигнут другого конца. При использовании этой нижестоящей услуги по транспортировке символов задача протокола канала состоит в обеспечении надежной (безошибочной) передаче блоков данных по каналу. Такие блоки часто называют циклами, или кадрами. Процедура обычно требует: синхронизации по первому символу в кадре, распознавания конца кадра, обнаружения ошибочных символов, если таковые возникнут, и исправления таких символов каким-либо способом (обычно это делается путем запроса на повторную передачу кадра, в котором обнаружены один или несколько ошибочных символов).

Уровень канала. Уровень канала передачи данных и находящийся под ним физический уровень обеспечивают канал безошибочной передачи между двумя узлами в сети. На этом уровне определяются правила использования физического уровня узлами сети. Электрическое представление данных в ЛВС (биты данных, методы кодирования данных и маркеры) распознаются на этом и только на этом уровне. Здесь обнаруживаются (распознаются) и исправляются ошибки путем требований повторной передачи данных.

Сетевой уровень. Функция сетевого уровня состоит в том, чтобы установить маршрут для передачи данных по сети или при необходимости через несколько сетей от узла передачи до узла назначения. Этот уровень предусматривает также управление потоком или перегрузками с целью предотвращения переполнения сетевых ресурсов (накопителей в узлах и каналов передачи), которое может привести к прекращению работы. При выполнении этих функций на сетевом уровне используется услуга нижестоящего уровня - канала передачи данных, обеспечивающего безошибочное поступление по сетевому маршруту блока данных, введенного в канал на противоположном конце.

Основная задача нижних уровней передать по маршруту блоки данных от источника к получателю, доставив их своевременно в желаемый конец.

Тогда задача верхних уровней - фактическая доставка данных в правильном виде и распознаваемой форме. Эти верхние уровни не знают о существовании сети. Они обеспечивают только требующуюся от них услугу.

Транспортный уровень. Обеспечивает надежный, последовательный обмен данными между двумя оконечными пользователями. Для этой цели на транспортном уровне используется услуга сетевого уровня. Он управляет также потоком, чтобы гарантировать правильный прием блоков данных. Вследствие различия оконечных устройств, данные в системе, могут передаваться с разными скоростями, поэтому, если не действует управление потоками, более медленные системы могут быть переполнены быстродействующими. Когда в процессе обработки находится больше одного пакета, транспортный уровень контролирует очередность прохождения компонент сообщения. Если приходит дубликат принятого ранее сообщения, то данный уровень опознает это и игнорирует сообщение.

Уровень сеанса. Функции этого уровня состоят в координации связи между двумя прикладными программами, работающих на разных рабочих станциях. Он также предоставляет услуги вышестоящему уровню представления. Это происходит в виде хорошо структурированного диалога. В число этих функций входит создание сеанса, управление передачей и приемом пакетов сообщений в течение сеанса и завершение сеанса. Этот уровень при необходимости также управляет переговорами, чтобы гарантировать правильный обмен данными. Диалог между пользователем сеансовой услуги (т.е. сторонами уровня представления и вышестоящим уровнем) может состоять из нормального или ускоренного обмена данными. Он может быть дуплексным, т.е. одновременной двусторонней передачей, когда каждая сторона имеет возможность независимо вести передачу, или полудуплексной, т.е. с одновременной передачей только в одну сторону. В последнем случае для передачи управления с одной стороны к другой применяются специальные метки. Уровень сеанса предоставляет услугу синхронизации для преодоления любых обнаруженных ошибок. При этой услуге метки синхронизации должны вставляться в поток данных пользователями услуги сеанса. Если будет обнаружена ошибка, то сеансовое соединение должно быть возвращено в определённое состояние, пользователи должны вернуться в установленную точку диалогового потока, сбросить часть переданных данных и затем восстановит передачу, начиная с этой точки.

Уровень представления. Управляет и преобразует синтаксис блоков данных, которыми обмениваются оконечные пользователи. Такая ситуация может возникать в неоднотипных ПК (IBM PC, Macintosh, DEC, Next, Burrogh), которым необходимо обмениваться данными. Назначение - преобразование синтаксических блоков данных.

Прикладной уровень. Протоколы прикладного уровня придают соответствующую семантику или смысл обмениваемой информации. Этот уровень является пограничным между ПП и процессами модели OSI. Сообщение, предназначенное для передачи через компьютерную сеть, попадает в модель OSI в данной точке, проходит через уровень 1 (физический), пересылается на другой PC, и проходит от уровня 1 в обратном порядке до достижения ПП на другом PC через ее прикладной уровень. Таким образом, прикладной уровень обеспечивает взаимопонимание двух прикладных программ на разных компьютерах.

3. Разновидности каналов связи

Среда передачи данных - совокупность линий передачи данных и блоков взаимодействия (т.е. сетевого оборудования, не входящего в станции данных), предназначенных для передачи данных между станциями данных. Среды передачи данных могут быть общего пользования или выделенными для конкретного пользователя.

Канал (канал связи) - средства односторонней передачи данных. Примером канала, может быть, полоса частот, выделенная одному передатчику при радиосвязи.

Канал передачи данных - средства двустороннего обмена данными, включающие аппаратуру окончания канала данных и линию передачи данных. По природе физической среды передачи данных (ПД) различают каналы передачи данных на оптических линиях связи, проводных (медных) линиях связи и беспроводные.

Каналы связи можно разделить на:

1. Проводные линии связи

В вычислительных сетях проводные линии связи представлены коаксиальными кабелями и витыми парами проводов. Витые пары иногда называют сбалансированной линией в том смысле, что в двух проводах линии передаются одни и те же уровни сигнала (по отношению к земле), но разной полярности. При приеме воспринимается разность сигналов, называемая парафазным сигналом. Синфазные помехи при этом самокомпенсируются.

2. Оптические линии связи

Оптические линии связи реализуются в виде волоконно-оптических линий связи (ВОЛС). Конструкция ВОЛС - кварцевый сердечник диаметром 10 мкм, покрытый отражающей оболочкой. ВОЛС являются основой высокоскоростной передачи данных, особенно на большие расстояния.

3. Беспроводные каналы связи

В беспроводных каналах передача информации осуществляется на основе распространения радиоволн.

Чем выше несущая частота, тем больше емкость (число каналов) системы связи, но тем меньше предельные расстояния, на которых возможна прямая передача между двумя пунктами без ретрансляторов. Первая из причин и порождает тенденцию к освоению новых более высокочастотных диапазонов.

Радиоканалы входят необходимой составной частью в спутниковые и радиорелейные системы связи, применяемые в территориальных сетях, в сотовые системы мобильной связи, они используются в качестве альтернативы кабельным системам в локальных сетях и при объединении сетей отдельных офисов и предприятий в корпоративные сети.

4. Спутниковые каналы передачи данных

Спутники в системах связи могут находиться на геостационарных (высота 36 тысяч км) или низких орбитах. При геостационарных орбитах заметны задержки на прохождение сигналов (туда и обратно около 520 мс). Возможно покрытие поверхности всего земного шара с помощью четырех спутников. В низкоорбитальных системах обслуживание конкретного пользователя происходит попеременно разными спутниками. Чем ниже орбита, тем меньше площадь покрытия и, следовательно, нужно или больше наземных станций, или требуется межспутниковая связь, что естественно утяжеляет спутник. Число спутников также значительно больше (обычно несколько десятков).

Структура спутниковых каналов передачи данных может быть проиллюстрирована на примере широко известной системы VSAT (Very Small Aperture Terminal). Наземная часть системы представлена совокупностью комплексов, в состав каждого из них входят центральная станция (ЦС) и абонентские пункты (АП). Связь ЦС со спутником происходит по радиоканалу (пропускная способность 2 Мбит/с) через направленную антенну диаметром 1...3 м и приемопередающую аппаратуру. АП подключаются к ЦС по схеме "звезда" с помощью многоканальной аппаратуры или по радиоканалу через спутник. Те АП, которые соединяются по радиоканалу (это подвижные или труднодоступные объекты), имеют свои антенны, и для каждого АП выделяется своя частота. ЦС передает свои сообщения широковещательно на одной фиксированной частоте, а принимает на частотах АП.

4. Организация доступа к информационным сетям

Структура территориальных сетей

Глобальная сеть Internet - самая крупная и единственная в своем роде сеть в мире. Среди глобальных сетей она занимает уникальное положение. Правильнее ее рассматривать как объединение многих сетей, сохраняющих самостоятельное значение. Действительно, Internet не имеет ни четко выраженного владельца, ни национальной принадлежности. Любая сеть может иметь связь с Internet и, следовательно, рассматриваться как ее часть, если в ней используются принятые для Internet протоколы TCP/IP или имеются конверторы в протоколы TCP/IP. Практически все сети национального и регионального масштабов имеют выход в Internet.

Типичная территориальная (национальная) сеть имеет иерархическую структуру.

Верхний уровень - федеральные узлы, связанные между собой магистральными каналами связи. Магистральные каналы физически организуются на ВОЛС или на спутниковых каналах связи. Средний уровень - региональные узлы, образующие региональные сети. Они связаны с федеральными узлами и, возможно, между собой выделенными высоко- или среднескоростными каналами, такими, как каналы Т1, Е1, B-ISDN или радиорелейные линии. Нижний уровень - местные узлы (серверы доступа), связанные с региональными узлами, преимущественно коммутируемыми или выделенными телефонными каналами связи, хотя заметна тенденция к переходу к высоко- и среднескоростным каналам. Именно к местным узлам подключаются локальные сети малых и средних предприятий, а также компьютеры отдельных пользователей. Корпоративные сети крупных предприятий соединяются с региональными узлами выделенными высоко- или среднескоростными каналами.

Основные виды доступа

1. Сервис телекоммуникационных технологий. Основными услугами, предоставляемыми телекоммуникационными технологиями являются:

Электронная почта;

Передача файлов;

Телеконференции;

Справочные службы (доски объявлений);

Видеоконференции;

Доступ к информационным ресурсам (информационным базам) сетевых серверов;

Мобильная сотовая связь;

Компьютерная телефония;

Специфика телекоммуникаций проявляется, прежде всего, в прикладных протоколах. Среди них наиболее известны протоколы, связанные с Internet, и протоколы ISO-IP (ISO 8473), относящиеся к семиуровневой модели открытых систем. К прикладным протоколам Internet относятся следующие:

Telnet - протокол эмуляции терминала, или, другими словами, протокол реализации дистанционного управления используется для подключения клиента к серверу при их размещении на разных компьютерах, пользователь через свой терминал имеет доступ к компьютеру-серверу;

FTP - протокол файлового обмена (реализуется режим удаленного узла), клиент может запрашивать и получать файлы с сервера, адрес которого указан в запросе;

HTTP (Hypertext Transmission Protocol) - протокол для связи WWW-серверов и WWW-клиентов;

NFS - сетевая файловая система, обеспечивающая доступ к файлам всех UNIX-машин локальной сети, т.е. файловые системы узлов выглядят для пользователя как единая файловая система;

SMTP, IMAP, POP3 - протоколы электронной почты.

Указанные протоколы реализуются с помощью соответствующего программного обеспечения. Для Telnet, FTP, SMTP на серверной стороне выделены фиксированные номера протокольных портов.

2. Электронная почта.

Электронная почта (E-mail) - средство обмена сообщениями по электронным коммуникациям (в режиме off-line). Можно пересылать текстовые сообщения и архивированные файлы. В последних могут содержаться данные (например, тексты программ, графические данные) в различных форматах.

3. Файловый обмен.

Файловый обмен - доступ к файлам, распределенным по различным компьютерам. В сети Internet на прикладном уровне используется протокол FTP. Доступ возможен в режимах off-line и on-line. В режиме off-line посылается запрос к FTP-серверу, сервер формирует и посылает ответ на запрос. В режиме on-line осуществляется интерактивный просмотр каталогов FTP-сервера, выбор и передача нужных файлов. На ЭВМ пользователя нужен FTP-клиент.

4. Телеконференции и "доски объявлений".

Телеконференции - доступ к информации, выделенной для группового использования в отдельных конференциях (newsgroups). Возможны глобальные и локальные телеконференции. Включение материалов в newsgroups, рассылка извещений о новых поступивших материалах, выполнение заказов - основные функции программного обеспечения телеконференций. Возможны режимы E-mail и on-line.

Самая крупная система телеконференций - USENET. В USENET информация организована иерархически. Сообщения рассылаются или лавинообразно, или через списки рассылки. В режиме on-line можно прочитать список сообщений, а затем и выбранное сообщение. В режиме off-line из списка выбирается сообщение и на него посылается заказ.

Телеконференции могут быть с модератором или без него. Пример: работа коллектива авторов над книгой по спискам рассылки.

Существуют также средства аудиоконференций (голосовых телеконференций). Вызов, соединение, разговор происходят для пользователя как в обычном телефоне, но связь идет через Internet.

Электронная "доска объявлений" BBS (Bulletin Board System) - технология, близкая по функциональному назначению к телеконференции, позволяет централизованно и оперативно направлять сообщения для многих пользователей. Программное обеспечение BBS сочетает в себе средства электронной почты, телеконференций и обмена файлами. Примеры программ, в которых имеются средства BBS, - Lotus Notes, World-group.

5. Доступ к распределенным базам данных.

В системах "клиент/сервер" запрос должен формироваться в ЭВМ пользователя, а организация поиска данных, их обработка и формирование ответа на запрос относятся к ЭВМ-серверу. При этом нужная информация может быть распределена по различным серверам. В сети Internet имеются специальные серверы баз данных, называемые WAIS (Wide Area Information Server), в которых могут содержаться совокупности баз данных под управлением различных СУБД.

Типичный сценарий работы с WAIS-сервером:

Выбор нужной базы данных;

Формирование запроса, состоящего из ключевых слов;

Посылка запроса к WAIS-серверу;

Получение от сервера заголовков документов, соответствующих заданным ключевым словам;

Выбор нужного заголовка и его посылка к серверу;

Получение текста документа.

К сожалению, WAIS в настоящее время не развивается, поэтому используется мало, хотя индексирование и поиск по индексам в больших массивах неструктурированной информации, что было одной из основных функций WAIS, - задача актуальная.

6. Информационная система WWW.

WWW (World Wide Web - всемирная паутина) - гипертекстовая информационная система сети Internet. Другое ее краткое название - Web. Это более современная система предоставляет пользователям большие возможности.

Во-первых, это гипертекст - структурированный текст с введением в него перекрестных ссылок, отражающих смысловые связи частей текста. Слова-ссылки выделяются цветом и/или подчеркиванием. Выбор ссылки вызывает на экран связанный со словом-ссылкой текст или рисунок. Можно искать нужный материал по ключевым словам.

Во-вторых, облегчено представление и получение графических изображений. Информация, доступная по Web-технологии, хранится в Web-серверах. Сервер имеет программу, постоянно отслеживающую приход на определенный порт (обычно это порт 80) запросов от клиентов. Сервер удовлетворяет запросы, посылая клиенту содержимое запрошенных Web-страниц или результаты выполнения запрошенных процедур. Клиентские программы WWW называют браузерами.

Имеются текстовые и графические браузеры. В браузерах имеются команды листания, перехода к предыдущему или последующему документу, печати, перехода по гипертекстовой ссылке и т.п. Для подготовки материалов и их включения в базу WWW разработаны специальный язык HTML (Hypertext Markup Language) и реализующие его программные редакторы, например Internet Assistant в составе редактора Word или Site Edit, подготовка документов предусмотрена и в составе большинства браузеров.

Для связи Web-серверов и клиентов разработан протокол HTTP, работающий на базе TCP/IP. Web-сервер получает запрос от браузера, находит соответствующий запросу файл и передает его для просмотра в браузер.

Заключение

Технологии Интранет и Интернет продолжают развиваться. Разрабатываются новые протоколы; пересматриваются старые. NSF значительно усложнила систему, введя свою магистральную сеть, несколько региональных сетей и сотни университетских сетей.

Другие группы также продолжают присоединяться к Интернету. Самое значительное изменение произошло не из-за присоединения дополнительных сетей, а из-за дополнительного трафика. Физики, химики, и астрономы работают и обмениваются объемами данных большими, чем исследователи в компьютерных науках, составляющие большую часть пользователей трафика раннего Интернета. Эти новые ученые привели к значительному увеличению загрузки Интернета, когда они начали использовать его, и загрузка постоянно увеличивалась по мере того, как они все активнее использовали его.

Чтобы приспособиться к росту трафика, пропускная способность магистральной сети NSFNET была увеличена вдвое, приведя к тому, что текущая пропускная способность приблизительно в 28 раз больше, чем первоначальная; планируется еще одно увеличение, чтобы довести этот коэффициент до 30.

На настоящий момент трудно предсказать, когда исчезнет необходимость дополнительного повышения пропускной способности. Рост потребностей в сетевом обмене не был неожиданным. Компьютерная индустрия получила большое удовольствие от постоянных требований на увеличение вычислительной мощности и большего объема памяти для данных в течение долгих лет. Пользователи только начали понимать, как использовать сети. В будущем мы можем ожидать постоянное увеличение потребностей во взаимодействии. Поэтому потребуются технологии взаимодействия с большей пропускной способностью, чтобы приспособиться к этому росту.

Расширение Интернета заключается в сложности, возникшей из-за того, что несколько автономных групп являются частями объединенного Интернета. Исходные проекты для многих подсистем предполагали централизованное управление. Потребовалось много усилий, чтобы доработать эти проекты для работы при децентрализованном управлении.

Итак, для дальнейшего развития информационных сетей потребуются более высокоскоростные коммуникационные технологии.

Основные понятия

Коммуникационная сеть - система, состоящая из объектов, осуществляющих функции генерации, преобразования, хранения и потребления продукта, называемых пунктами (узлами) сети и линий передачи (связей, коммуникаций, соединений), осуществляющих передачу продукта между пунктами.

Информационная сеть - коммуникационная сеть, в которой продуктом генерирования, переработки, хранения и использования является информация.

Вычислительная сеть - информационная сеть, в состав которой входит вычислительное оборудование.

Среда передачи данных - совокупность линий передачи данных и блоков взаимодействия (т.е. сетевого оборудования, не входящего в станции данных), предназначенных для передачи данных между станциями данных.

Линия передачи данных - средства, которые используются в информационных сетях для распространения сигналов в нужном направлении.

Канал (канал связи) - средства односторонней передачи данных.

Канал передачи данных - средства двустороннего обмена данными, включающие аппаратуру окончания канала и линию передачи данных.

Список литературы

1. Семенов Ю.А. Протоколы и ресурсы Internet. М.: Радио и связь,1996.

2. Лазарев В.Г. Интеллектуальные цифровые сети: Справочник. / Под ред. академика Н.А. Кузнецова. - М.: Финансы и статистика, 1996.

3. Финаев В.И. Информационные обмены в сложных системах: Учебное пособие. Таганрог: Изд-во ТРТУ, 2001.

4. А.В. Пушнин, В.В. Янушко. Информационные сети и телекоммуникации. Таганрог: Издательство ТРТУ, 2005. 128 с.

Размещено на Allbest.ru

...

Подобные документы

    Классификация телекоммуникационных сетей. Схемы каналов на основе телефонной сети. Разновидности некоммутируемых сетей. Появление глобальных сетей. Проблемы распределенного предприятия. Роль и типы глобальных сетей. Вариант объединения локальных сетей.

    презентация , добавлен 20.10.2014

    Принципы построения систем передачи информации. Характеристики сигналов и каналов связи. Методы и способы реализации амплитудной модуляции. Структура телефонных и телекоммуникационных сетей. Особенности телеграфных, мобильных и цифровых систем связи.

    курсовая работа , добавлен 29.06.2010

    Характеристика локальных компьютерных сетей и рассмотрение основных принципов работы глобальной сети Интернет. Понятие, функционирование и компоненты электронной почты, форматы ее адресов. Телекоммуникационные средства связи: радио, телефон и телевидение.

    курсовая работа , добавлен 25.06.2011

    Основные характеристики дискретных каналов. Проблема их оптимизации. Классификация каналов передачи дискретной информации по различным признакам. Нормирование характеристик непрерывных каналов связи. Разновидности систем передачи дискретных каналов.

    контрольная работа , добавлен 01.11.2011

    Предназначение коммутатора, его задачи, функции, технические характеристики. Достоинства и недостатки в сравнении с маршрутизатором. Основы технологии организации кабельных систем сети и архитектура локальных вычислительных сетей. Эталонная модель OSI.

    отчет по практике , добавлен 14.06.2010

    Принципы построения беспроводных телекоммуникационных систем связи. Схема построения системы сотовой связи. Преимущества кодового разделения. Исследование распространенных стандартов беспроводной связи. Корреляционные и спектральные свойства сигналов.

    курсовая работа , добавлен 22.05.2010

    Современные системы телекоммуникаций; основные стандарты подвижной связи GSM, CDMA 200, UMTS. Использование операторами сотовых сетей новых услуг и технологий 3-го поколения. Характеристики новейших стандартов беспроводного доступа: Wi-Fi, Bluetooth.

    учебное пособие , добавлен 08.11.2011

    Современные телекоммуникационные средства и история их развития. Системы сотовой радиотелефонной связи. Высокое качество речевых сообщений, надежность и конфиденциальность связи, защита от несанкционированного доступа в сеть, миниатюрность радиотелефонов.

    реферат , добавлен 01.11.2004

    Виды мобильной связи, их специфические особенности, индивидуальная ниша. Развитие систем радиодоступа к информационным системам: характеристика сетей, типы структур, частотно-территориальные кластеры. Показатели качества и жизненный цикл системы.

    презентация , добавлен 16.03.2014

    Диапазоны частот, передаваемых основными типами направляющих систем. Параметры каналов линий связи. Обозначения в линиях связи. Переключатель каналов с мультиплексированием по времени. Характеристики каналов на коаксиальном кабеле, оптических кабелей.

Классификация сетей

В основу классификации ТВС положены наиболее характерные функциональные, информационные и структурные признаки.

По степени территориальной рассредоточенности элементов сети (абонентских систем, узлов связи) различают глобальные (государственные), региональные и локальные вычислительные сети (ГВС, РВС и ЛВС).

По характеру реализуемых функций сети делятся на вычислительные (основные функции таких сетей - обработка информации), информационные (для получения справочных данных по запросам пользователей), информационно-вычислительные, или смешанные, в которых в определенном, непостоянном соотношении выполняются вычислительные и информационные функции.

По способу управления ТВС делятся на сети с централизованным (в сети имеется один или несколько управляющих органов), децентрализованным (каждая АС имеет средства для управления сетью) и смешанным управлением, в которых в определенном сочетании реализованы принципы централизованного и децентрализованного управления (например, под централизованным управлением решаются только задачи с высшим приоритетом, связанные с обработкой больших объемов информации).

По организации передачи информации сети делятся на сети с селекцией информации и маршрутизацией информации. В сетях с селекцией информации, строящихся на основе моноканала, взаимодействие АС производится выбором (селекцией) адресованных им блоков данных (кадров): всем АС сети доступны все передаваемые в сети кадры, но копию кадра снимают только АС, которым они предназначены. В сетях с маршрутизацией информации для передачи кадров от отправителя к получателю может использоваться несколько маршрутов. Поэтому с помощью коммуникационных систем сети решается задача выбора оптимального (например, кратчайшего по времени доставки кадра адресату) маршрута.

По типу организации передачи данных сети с маршрутизацией информации делятся на сети с коммутацией цепей (каналов), коммутацией сообщений и коммутацией пакетов. В эксплуатации находятся сети, в которых используются смешанные системы передачи данных.

По топологии, т.е. конфигурации элементов в ТВС, сети делятся на два класса: широковещательные и последовательные. Широковещательные конфигурации и значительная часть последовательных конфигураций (кольцо, звезда с интеллектуальным центром, иерархическая) характерны для ЛВС. Для глобальных и региональных сетей наиболее распространенной является произвольная (ячеистая) топология. Нашли применение также иерархическая конфигурация и “звезда”.

В широковещательных конфигурациях в любой момент времени на передачу кадра может работать только одна рабочая станция (абонентная система). Остальные PC сети могут принимать этот кадр, т.е. такие конфигурации характерны для ЛВС с селекцией информации. Основные типы широковещательной конфигурации - общая шина, дерево, звезда с пассивным центром. Главные достоинства ЛВС с общей шиной - простота расширения сети, простота используемых методов управления, отсутствие необходимости в централизованном управлении, минимальный расход кабеля. ЛВС с топологией типа “дерево” - это более развитый вариант сети с шинной топологией. Дерево образуется путем соединения нескольких шин активными повторителями или пассивными размножителями (“хабами”), каждая ветвь дерева представляет собой сегмент. Отказ одного сегмента не приводит к выходу из строя остальных. В ЛВС с топологией типа “звезда” в центре находится пассивный соединитель или активный повторитель -достаточно простые и надежные устройства.



В последовательных конфигурациях, характерных для сетей с маршрутизацией информации, передача данных осуществляется последовательно от одной PC к соседней, причем на различных участках сети могут использоваться разные виды физической передающей среды.

К передатчикам и приемникам здесь предъявляются более низкие требования, чем в широковещательных конфигурациях. К последовательным конфигурациям относятся: произвольная (ячеистая), иерархическая, кольцо, цепочка, звезда с интеллектуальным центром, снежинка. В ЛВС наибольшее распространение получили кольцо и звезда, а также смешанные конфигурации - звездно-кольцевая, звездно-шинная.

В ЛВС с кольцевой топологией сигналы передаются только в одном направлении, обычно против часовой стрелки. Каждая PC имеет память объемом до целого кадра. При перемещении кадра по кольцу каждая PC принимает кадр, анализирует его адресное поле, снимает копию кадра, если он адресован данной PC, ретранслирует кадр. Естественно, что все это замедляет передачу данных в кольце, причем длительность задержки определяется числом PC. Удаление кадра из кольца производится обычно станцией-отправителем. В этом случае кадр совершает по кольцу полный круг и возвращается к станции-отправителю, который воспринимает его как квитанцию - подтверждение получения кадра адресатом. Удаление кадра из кольца может осуществляться и станцией-получателем, тогда кадр не совершает полного круга, а станция-отправитель не получает квитанции-подтверждения.

Кольцевая структура обеспечивает довольно широкие функциональные возможности ЛВС при высокой эффективности использования моноканала, низкой стоимости, простоте методов управления, возможности контроля работоспособности моноканала.

В широковещательных и большинстве последовательных конфигураций (за исключением кольца) каждый сегмент кабеля должен обеспечивать передачу сигналов в обоих направлениях, что достигается: в полудуплексных сетях связи - использованием одного кабеля для поочередной передачи в двух направлениях; в дуплексных сетях - с помощью двух однонаправленных кабелей; в широкополосных системах - применением различной несущей частоты для одновременной передачи сигналов в двух направлениях.

Глобальные и региональные сети, как и локальные, в принципе могут быть однородными (гомогенными), в которых применяются программно-совместимые ЭВМ, и неоднородными (гетерогенными), включающими программно-несовместимые ЭВМ. Однако, учитывая протяженность ГВС и РВС и большое количество используемых в них ЭВМ, такие сети чаще бывают неоднородными.

Основная функция телекоммуникационных систем (ТКС), или систем передачи данных (СПД) заключается в организации оперативного и надежного обмена информацией между абонентами. Главный показатель эффективности ТКС - время доставки информации - зависит от ряда факторов: структуры сети связи, пропускной способности линий связи, способов соединения каналов связи между взаимодействующими абонентами, протоколов информационного обмена, методов доступа абонентов к передающей среде, методов маршрутизации пакетов.

Типы сетей, линий и каналов связи. В ТВС используются сети связи - телефонные, телеграфные, телевизионные, спутниковые. В качестве линий связи применяются: кабельные (обычные телефонные линии связи, витая пара, коаксиальный кабель, волоконнооптические линии связи (ВОЛC, или световоды), радиорелейные, радиолинии.

Среди кабельных линий связи наилучшие показатели имеют световоды. Основные их преимущества: высокая пропускная способность (сотни мегабит в секунду), обусловленная использованием электромагнитных волн оптического диапазона; нечувствительность к внешним электромагнитным полям и отсутствие собственных электромагнитных излучений, низкая трудоемкость прокладки оптического кабеля; искро-, взрыво- и пожаробезопасность; повышенная устойчивость к агрессивным средам; небольшая удельная масса (отношение погонной массы к полосе пропускания); широкие области применения (создание магистралей коллективного доступа, систем связи ЭВМ с периферийными устройствами локальных сетей, в микропроцессорной технике и т.д.).

Недостатки ВОЛС: передача сигналов осуществляется только в одном направлении; подключение к световоду дополнительных ЭВМ значительно ослабляет сигнал; необходимые для световодов высокоскоростные модемы пока еще дороги; световоды, соединяющие ЭВМ, должны снабжаться преобразователями электрических сигналов в световые и обратно.

В ТВС нашли применение следующие типы каналов связи:

симплексные, когда передатчик и приемник связываются одной линией связи, по которой информация передается только в одном направлений (это характерно для телевизионных сетей связи);

полудуплексные, когда два узла связи соединены также одной линией, по которой информация передается попеременно то в одном направлении, то в противоположном (это характерно для информационно-справочных, запрос-ответных систем);

дуплексные, когда два узла связи соединены двумя линиями (прямой линией связи и обратной), по которым информация одновременно передается в противоположных направлениях.

Коммутируемые и выделенные каналы связи. В ТКС различают выделенные (некоммутируемые) каналы связи и с коммутацией на время передачи информации по этим каналам.

При использовании выделенных каналов связи приемопередающая аппаратура узлов связи постоянно соединена между собой. Этим обеспечиваются высокая степень готовности системы к передаче информации, более высокое качество связи, поддержка большого объема графика. Из-за сравнительно больших расходов на эксплуатацию сетей с выделенными каналами связи их рентабельность достигается только при условии достаточно полной загрузки каналов.

Для коммутируемых каналов связи, создаваемых только на время передачи фиксированного объема информации, характерны высокая гибкость и сравнительно небольшая стоимость (при малом объеме трафика). Недостатки таких каналов: потери времени на коммутацию (установление связи между абонентами), возможность блокировки из-за занятости отдельных участков линии связи, более низкое качество связи, большая стоимость при значительном объеме трафика.

Аналоговое и цифровое кодирование цифровых данных. Пересылка данных от одного узла ТКС к другому осуществляется последовательной передачей всех битов сообщения от источника к пункту назначения. Физически информационные биты передаются в виде аналоговых или цифровых электрических сигналов. Аналоговыми называются сигналы, которые могут представлять бесчисленное количество значений некоторой величины в пределах ограниченного диапазона. Цифровые (дискретные) сигналы могут иметь одно или конечный набор значений. При работе с аналоговыми сигналами для передачи закодированных данных используется аналоговый несущий сигнал синусоидальной формы, а при работе с цифровыми сигналами - двухуровневый дискретный сигнал. Аналоговые сигналы менее чувствительны к искажению, обусловленному затуханием в передающей среде, зато кодирование и декодирование данных проще осуществляются для цифровых сигналов.

Аналоговое кодирование применяется при передаче цифровых данных по телефонным (аналоговым) линиям связи, доминирующим в региональных и глобальных ТВС и изначально ориентированным на передачу акустических сигналов (речи). Перед передачей цифровые данные, поступающие обычно из ЭВМ, преобразуются в аналоговую форму с помощью модулятора-демодулятора (модема), обеспечивающего цифро-аналоговый интерфейс.

Возможны три способа преобразования цифровых данных в аналоговую форму или три метода модуляции:

амплитудная модуляция, когда меняется только амплитуда несущей синусоидальных колебаний в соответствии с последовательностью передаваемых информационных битов: например, при передаче единицы амплитуда колебаний устанавливается большой, а при передаче нуля -малой или сигнал несущей вообще отсутствует;

частотная модуляция, когда под действием модулирующих сигналов (передаваемых информационных битов) меняется только частота несущей синусоидальных колебаний: например, при передаче нуля - низкая;

фазовая модуляция, когда в соответствии с последовательностью передаваемых информационных битов изменяется только фаза несущей синусоидальных колебаний: при переходе от сигнала 1 к сигналу 0 или наоборот фаза меняется на 180 град..

Передающий модем преобразует (модулирует) сигнал несущей синусоидальных колебаний (амплитуду, частоту или фазу) таким образом, чтобы он мог нести модулирующий сигнал, т.е. цифровые данные от ЭВМ или терминала. Обратное преобразование (демодуляция) осуществляется принимающим модемом. В соответствии с реализуемым методом модуляции различают модемы с амплитудной, частотной и фазовой модуляцией. Наибольшее распространение получили частотная и амплитудная модуляции.

Цифровое кодирование цифровых данных выполняется напрямую, путем изменения уровней сигналов, несущих информацию.

Например, если в ЭВМ цифровые данные представляются сигналами уровней 5В для кода 1 и 0,2В для кода 0, то при передаче этих данных в линию связи уровни сигналов преобразуются соответственно в +12В и -12В. Такое кодирование осуществляется, в частности, с помощью асинхронных последовательных адаптеров RS-232-C при передаче цифровых данных от одного компьютера к другому на небольшие (десятки и сотни метров) расстояния.

Синхронизация элементов ТКС. Синхронизация - это часть протокола связи. В процессе синхронизации связи обеспечивается синхронная работа аппаратуры приемника и передатчика, при которой приемник осуществляет выборку поступающих информационных битов (т.е. замер уровня сигнал в линии связи) строго в моменты их прихода. Синхросигналы настраивают приемник на передаваемое сообщение еще до его прихода поддерживают синхронизацию приемника с приходящими битами данных.

В зависимости от способов решения проблемы синхронизации различают синхронную передачу, асинхронную передачу и передачу с автоподстройкой.

Синхронная передача отличается наличием дополнительной линии связи (кроме основной, по которой передаются данные) для передачи синхронизирующих импульсов (СИ) стабильной частоты. Каждый СИ подстраивает приемник. Выдача битов данных в линию связи передатчиком и выборка информационных сигналов приемником производятся в моменты появления СИ. В синхронной передаче синхронизация осуществляется весьма надежно, однако этой достигается дорогой ценой - необходимостью дополнительной линии связи.

Асинхронная передача не требует дополнительной линии связи. Передача данных осуществляется небольшими блоками фиксированной длины (обычно байтами). Синхронизация приемника достигается тем, что перед каждым передаваемым байтом посылается дополнительный бит - стартбит, а после переданного байта - еще один дополнительный бит -стопбит. Для синхронизации используется стартбит. Такой способ синхронизации может использоваться только в системах с низкими скоростями передачи данных.

Передача с автоподстройкой, также не требующая дополнительной линии связи, применяется в современных высокоскоростных системах передачи данных. Синхронизация достигается за счет использования самосинхронизирующих кодов (СК). Кодирование передаваемых данных с помощью СК заключается в том, чтобы обеспечить регулярные и частые изменения (переходы) уровней сигнала в канале. Каждый переход уровня сигнала от высокого к низкому или наоборот используется для подстройки приемника. Лучшими считаются такие СК, которые обеспечивают переход уровня сигнала не менее одного раза в течение интервала времени, необходимого на прием одного информационного бита. Чем чаще переходы уровня сигнала, тем надежнее осуществляется синхронизация приемника и увереннее производится идентификация принимаемых битов данных.

Наиболее распространенными являются следующие самосинхронизирующие коды :

NRZ-код (код без возвращения к нулю);

RZ-код (код с возвращением к нулю);

Манчестерский код;

Биполярный код с поочередной инверсией уровня (например, код AMI).

Рис. Схемы кодирования сообщения с помощью самосинхронизирующих кодов

На рис. представлены схемы кодирования сообщения 0101100 с помощью этих СК.

Для характеристики и сравнительной оценки СК используются следующие показатели:

уровень (качество) синхронизации;

Надежность (уверенность) распознавания и выделения принимаемых информационных битов;

Требуемая скорость изменения уровня сигнала в линии связи при использовании СК, если пропускная способность линии задана;

Сложность (и, следовательно, стоимость) оборудования, реализующего СК.

Цифровые сети связи (ЦСС). В последние годы в ТВС все большее распространение получают цифровые сети связи, в которых используется цифровая технология.

Причины распространения цифровой технологии в сетях:

Цифровые устройства, используемые в ЦСС, производятся на основе интегральных схем высокой интеграции; по сравнению с аналоговыми устройствами они отличаются большой надежностью и устойчивостью в работе и, кроме того, в производстве и эксплуатации, как правило, дешевле;

Цифровую технологию можно использовать для передачи любой информации по одному каналу (акустических сигналов, телевизионных видеоданных, факсимильных данных);

Цифровые методы преодолевают многие из ограничений передачи и хранения, которые присущи аналоговым технологиям.

В ЦСС при передаче информации осуществляется преобразование аналогового сигнала в последовательность цифровых значений, а при приеме - обратное преобразование.

Аналоговый сигнал проявляется как постоянное изменение амплитуды во времени. Например, при разговоре по телефону, который действует как преобразователь акустических сигналов в электрические, механические колебания воздуха (чередование высокого и низкого давления) преобразуются в электрический сигнал с такой же характеристикой огибающей амплитуды. Однако непосредственная передача аналогового электрического сигнала по телефонной линии связи сопряжена с рядом недостатков: искажением сигнала вследствие его нелинейности, которая увеличивается усилителями, затуханием сигнала при передаче через среду, подверженностью влиянию шумов в канале и др.

В ЦСС эти недостатки преодолимы. Здесь форма аналогового сигнала представляется в виде цифровых (двоичных) образов, цифровых значений, представляющих соответствующие значения огибающей амплитуды синусоидальных колебаний в точках на дискретных уровнях. Цифровые сигналы также подвержены ослаблению и шумам при их прохождении через канал, однако на приемном пункте необходимо отмечать лишь наличие или отсутствие двоичного цифрового импульса, а не его абсолютное значение, которое важно в случае аналогового сигнала. Следовательно, цифровые сигналы принимаются надежнее, их можно полностью восстановить, прежде чем они из-за затухания станут ниже порогового значения.

Преобразование аналоговых сигналов в цифровые осуществляется различными методами. Один из них - импульсно-кодовая модуляция (ИКМ), предложенная в 1938 г. А.Х. Ривсом (США). При использовании ИКМ процесс преобразования включает три этапа: отображение, квантование и кодирование (рис. 12.2).

Рис. 12.2. Преобразование аналогового сигнала в 8-элементный цифровой код

Первый этап (отображение) основан на теории отображения Найквиста. Основное положение этой теорий гласит: “Если аналоговый сигнал отображается на регулярном интервале с частотой не менее чем в два раза выше максимальной частоты исходного сигнала в канале, то отображение будет содержать информацию, достаточную для восстановления исходного сигнала”. При передаче акустических сигналов (речи) представляющие их электрические сигналы в телефонном канале занимают полосу частот от 300 до 3300 Гц. Поэтому в ЦСС принята частота отображений, равная 8000 раз в секунду. Отображения, каждое из которых называется сигналом импульсно-амплитудной модуляции (ИАМ), запоминаются, а затем трансформируются в двоичные образы.

На этапе квантования каждому сигналу ИАМ придается квантованное значение, соответствующее ближайшему уровню квантования. И ЦСС весь диапазон изменения амплитуды сигналов ИАМ разбивается на 128 или 256 уровней квантования. Чем больше уровней квантования, тем точнее амплитуда ИАМ-сигнала представляется квантованным уровнем.

На этапе кодирования каждому квантованному отображению ставится в соответствие 7-разрядный (если число уровней квантования равно 128) или 8-разрядный (при 256-шаговом квантовании) двоичный код. На рис. 12.2 показаны сигналы 8-элементного двоичного кода 00101011, соответствующего квантовому сигналу с уровнем 43. При кодировании 7-элементнымй кодами скорость передачи данных по каналу должна составлять 56 Кбит/с (это произведение частоты отображения на разрядность двоичного кода), а при кодировании 8-элементными кодами - 64 Кбит/с.

В современных ЦСС используется и другая концепция преобразования аналоговых сигналов в цифровые, при которой квантуются и затем кодируются не сами сигналы ИАМ, а лишь их изменения, причем число уровней квантования принимается таким же. Очевидно, что такая концепция позволяет производить преобразование сигналов с большей точностью.

Спутниковые сети связи. Появление спутниковых сетей связи вызвало такую же революцию в передаче информации, как изобретение телефона.

Первый спутник связи был запущен в 1958 г., а в 1965 г. запущен первый коммерческий спутник связи (оба - в США). Эти спутники были пассивными, позже на спутниках стали устанавливать усилители и приемопередающую аппаратуру.

Для управления передачей данных между спутником и наземными РТС используются следующие способы:

1. Обычное мультиплексирование - с частотным разделением и временным разделением. В первом случае весь частотный спектр радиоканала разделяется на подканалы, которые распределяются между пользователями для передачи любого графика.

Издержки такого способа: при нерегулярном ведении передач подканалы используются нерационально; значительная часть исходной полосы пропускания канала используется в качестве разделительной полосы для предотвращения нежелательного влияния подканалов друг на друга. Во втором случае весь временной спектр делится между пользователями, которые по своему усмотрению распоряжаются предоставленными временными квантами (слотами). Здесь также возможно простаивание канала из-за нерегулярного его использования.

2. Обычная дисциплина “первичный / вторичный” с использованием методов и средств опроса/выбора. В качестве первичного органа, реализующего такую дисциплину управления спутниковой связью, чаще выступает одна из наземных РТС, а реже - спутник. Цикл опроса и выбора занимает значительное время, особенно при наличии в сети большого количества АС. Поэтому время реакции на запрос пользователя может оказаться для него неприемлемым.

3. Дисциплина управления типа “первичный / вторичный” без опроса, с реализацией метода множественного доступа с квантованием времени (ТДМА). Здесь слоты назначаются первичной РТС, называемой эталонной. Принимая запросы от других РТС, эталонная станция в зависимости от характера графика и занятости канала удовлетворяет эти запросы путем назначения станциям конкретных слотов для передачи кадров. Такой метод широко используется в коммерческих спутниковых сетях.

4. Равноранговые дисциплины управления. Для них характерно, что все пользователи имеют равное право доступа к каналу и между ними происходит соперничество за канал. В начале 70-х годов Н.Абрамсон из Гавайского университета предложил метод эффективного соперничества за канал между некоординируемыми пользователями, названный системой ALOHA. Существует несколько вариантов этой системы: система, реализующая метод случайного доступа (случайная ALOHA); равноранговая приоритетная слотовая система (слотовая ALOHA) и др.

К основным преимуществам спутниковых сетей связи относятся следующие:

Большая пропускная способность, обусловленная работой спутников в широком диапазоне гигагерцовых частот. Спутник может поддерживать несколько тысяч речевых каналов связи. Например, один из используемых в настоящее время коммерческих спутников имеет 10 транспондеров, каждый из которых может передавать 48 Мбит/с;

Обеспечение связи между станциями, расположенными на очень больших расстояниях, и возможность обслуживания абонентов в самых труднодоступных точках;

Независимость стоимости передачи информации от расстояния между взаимодействующими абонентами (стоимость зависит от продолжительности передачи или объема передаваемого графика);

Возможность построения сети без физически реализованных коммутационных устройств, обусловленная широковещательностью работы спутниковой связи. Эта возможность связана со значительным экономическим эффектом, который может быть получен по сравнению с использованием обычной неспутниковой сети, основанной на многочисленных физических линиях связи и коммуникационных устройствах.

Недостатки спутниковых сетей связи:

Необходимость затрат средств и времени на обеспечение конфиденциальности передачи данных, на предотвращение возможности перехвата данных “чужими” станциями;

Наличие задержки приема радиосигнала наземной станцией из-за больших расстояний между спутником и РТС. Это может вызвать проблемы, связанные с реализацией канальных протоколов, а также временем ответа;

Возможность взаимного искажения радиосигналов от наземных станций, работающих на соседних частотах;

Подверженность сигналов на участках Земля - спутник и спутник -Земля влиянию различных атмосферных явлений.

Для решения проблем с распределением частот в диапазонах 6/4 и 14/12 ГГц и размещением спутников на орбите необходимо активное сотрудничество многих стран, использующих технику спутниковой связи.

По назначению телекоммуникационные системы группируются следующим образом:

Системы телевещания;

Системы связи (в т.ч. персонального вызова);

Компьютерные сети.

По типу используемой среды передачи информации:

Кабельные (традиционные медные);

Оптоволоконные;

Эфирные;

Спутниковые.

По способу передачи информации:

Аналоговые;

Цифровые.

Системы связи подразделяются по мобильности на:

Стационарные (традиционные абонентские линии);

Подвижные.

Подвижные системы связи подразделяются по принципу охвата зоны обслуживания:

На микросотовые - DECT;

Сотовые - NMT-450, D-AMPS, GSM, CDMA;

Транкинговые (макросотовые, зоновые) – TETRA, SmarTrunk;

Спутниковые.

Системы телевещания

Системы телевещания (ТВ) по способу доставки сигнала и зоне охвата подразделяются на:

Сети телевизионного приёма;

- «кабельные» (систем коллективного телевизионного приёма (СКТП));

Технологии беспроводного высокоскоростного распределения мультимедийной информации MMDS , MVDS и LMDS;

Спутниковые.

Системы подвижной связи

Сотовые системы подвижной связи (СПС), сети персонального радиовызова (СПР) и системы спутниковой связи предназначены для передачи данных и обеспечения подвижных и стационарных объектов телефонной связью. Передача данных подвижному абоненту резко расширяет его возможности, посколь­ку, кроме телефонных, он может принимать телексные и факсимильные сообщения, различ­ного рода графическую информацию и пр. Увеличение объема информации требует сокращения времени на ее передачу и получение, вследствие чего наблюдается устой­чивый рост производства мобильных средств радиосвязи (пейджеров, сотовых радиотелефо­нов, спутниковых пользовательских терминалов).

Основное преимущество СПС: подвижная связь позволяет абоненту полу­чать услуги связи в любой точке в пределах зон действия наземных или спутниковых сетей; благодаря прогрессу в технологии производства средств связи созданы малогабаритные уни­версальные абонентские терминалы (AT). СПС представляют потребителям возможность выхода в те­лефонную сеть общего пользования (ТфОП), передачу компьютерных данных.

К сетям подвижной связи относятся: сети сотовой подвиж­ной связи (ССПС); сети транкинговой связи (СТС); сети персонального радиовызова (СПР); сети персональной спутниковой (мобильной) связи.

Сети сотовой подвижной связи

Среди современных телекоммуникационных средств наиболее стремительно развива­ются сети сотовой радиотелефонной связи. Их внедрение позволило решить проблему эко­номичного использования выделенной полосы радиочастот путем передачи сообщений на одних и тех же частотах, но в разных зонах (сотах) и увеличить пропускную способность телекоммуникационных се­тей. Свое название они получили в соответствии с сотовым принципом организации связи, согласно которому зона обслуживания делится на ячейки (соты).

Система сотовой связи - это сложная и гибкая техническая система, допускающая большое разнообразие по вариантам конфигурации и набору выполняемых функций. Она может обеспечивать передачу речи и других видов информации. Для передачи речи, в свою очередь, может быть реали­зована обычная двухсторонняя и многосторонняя телефонная связь (конференцсвязь - с уча­стием в разговоре более двух абонентов одновременно), голосовая почта. При организации обычного телефонного разговора возможны режимы автодозвона, ожидания вызова, переад­ресации (условной или безусловной) вызова и пр.

Современные технологии позволяют обеспечить абонентам ССПС высокое качество речевых сообщений, надежность и конфиденциальность связи, миниатюр­ность радиотелефонов, защиту от несанкционированного доступа.

Сети транкинговой связи

Сети транкинговой связи в некоторой степени близки к сотовым: это также сети на­земной радиотелефонной подвижной связи, обеспечивающие мобильность абонентов в пределах достаточно большой зоны обслуживания. Основ­ное отличие состоит в том, что СТС проще по принципам построения и предоставляют або­нентам меньший набор услуг, но за счет этого они дешевле сотовых. СТС имеют значительно меньшую емкость, чем сотовые, и принципиально ориентированы на ведомственную (корпоративную) мо­бильную связь. Основное применение СТС - корпоративная (служебная, ведомственная) связь, на­пример, оперативная связь пожарной службы с числом выходов (каналов) «в город» значи­тельно меньшим числа абонентов системы. Основными требованиями к СТС являются: обеспечение связи в заданной зоне обслуживания независимо от местоположения подвижных абонентов; возможность взаимодействия отдельных групп абонентов и организации циркулярной связи; оперативность управления связью, в том числе на различных уровнях; обеспечение связи через центры управления; возможность приоритетного установления каналов связи; низкие энергетические затраты подвижной станции; конфиденциальность разговоров.

Название транкинговой связи происходит от английского trunk (ствол) и отражает то обстоятельство, что ствол связи в такой системе содержит несколько физических (как прави­ло, частотных) каналов, каждый из которых может быть предоставлен любому из абонентов системы. Указанная особенность отличает СТС от предшествовавших ей систем двухсторон­ней радиосвязи, в которых каждый абонент имел возможность доступа лишь к одному кана­лу, но последний должен был поочередно обслуживать ряд абонентов. СТС по сравнению с такими системами обладают значительно более высокой емкостью (пропускной способно­стью) при тех же показателях качества обслуживания.

Сети персонального радиовызова

Сети персонального радиовызова (СПР) или пейджинговые сети (paging - вызов) - это сети односторонней мобильной связи, обеспечивающие передачу коротких сообщений из центра системы (с пейджингового терминала) на миниатюрные абонентские приемники (пейджеры).

Сети персонального радиовызова предоставляют услуги удобного и относительно де­шевого вида мобильной связи, но с существенными ограничениями: связь односторонняя, не в реальном времени и только в виде коротких сообщений. СПР получили в мире довольно широкое распространение - в целом, того же порядка, что и сети сотовой связи, хотя их распространенность в разных странах существенно различается.

Сети мобильной спутниковой связи

Наряду со ставшими уже общедоступными СПС (персонального радиовызова и сото­выми), все более активно развиваются сети спутниковой связи. Актуальными являются следующие области применения мобильной спутниковой связи:

Расширение сотовых сетей;

Использование спутниковой связи в районах, где развертывание СПС нецелесообразно, например, из-за низкой плот­ности населения;

Использование спутниковой связи в дополнение к существующей сотовой, например, для обеспечения роуминга при несовместимости стан­дартов, или в каких-либо чрезвычайных ситуациях;

Стационарная беспроводная связь в районах с малой плотностью населения при отсутствии СПС и проводной связи;

При передаче информации в глобальном масштабе (акваториях Мирового океана, местах разрывов на­земной инфраструктуры и т.д.).

В частности, при удалении абонента за пределы зоны обслуживания местных сотовых сетей спутниковая связь играет ключевую роль, поскольку она не имеет ограничений по при­вязке абонента к конкретной местности. Во многих регионах мира спрос на услуги подвижной связи может быть эффективно удовлетворен только с помощью спутниковых систем.

Волоконно-оптические сети

Волоконно-оптическая линия связи (ВОЛС) - это вид системы передачи, при котором информация передается по оптическим диэлектрическим волноводам, известным под назва­нием "оптическое волокно". Волоконно-оптическая сеть - это информационная сеть, связую­щими элементами между узлами которой являются волоконно-оптические линии связи. Тех­нологии волоконно-оптических сетей, помимо вопросов волоконной оптики, охватывают также вопросы, касающиеся электронного передающего оборудования, его стандартизации, прото­колов передачи, вопросы топологии сети и общие вопросы построения сетей.

Преимущества ВОЛС: широкая полоса пропускания, малое затухание светового сигнала в волокне, низкий уровень шумов, высокая помехозащищенность, малый вес и объем, высокая защищенность от несанкционированного доступа, гальваническая развязка элементов сети, взрыво- и пожаробезопасность, экономичность волоконно-оптических кабелей (ВОК), длительность срока эксплуатации, удаленное электропитание.

Недостатки ВОЛС: стоимость интерфейсного оборудования (цена на оптические передатчики и приемники остается пока еще довольно высокой), монтаж и обслуживание оптических линий (стоимость работ по монтажу, тестированию и поддержке волоконно-оптических линий связи также остается высокой), требование специальной защиты волокна.

Преимущества от применения волоконно-оптических линий связи настолько значитель­ны, что, несмотря на перечисленные недостатки оптического волокна, дальнейшие перспекти­вы развития технологии ВОЛС в информационных сетях более чем очевидны.

Телекоммуникационные сети представляют самое сложное оборудование в мире. Стоит только подумать о телефонной сети, которая включает более 2 миллиардов стационарных и мобильных телефонов с универсальным доступом. Когда один из этих телефонов делает запрос, телефонная сеть в состоянии установить связь с любым другим телефоном в мире. Кроме того, много других сетей связаны с телефонной сетью. Это позволяет утверждать, что сложность глобальной телекоммуникационной сети превышает сложность любой другой системы в мире.

Телекоммуникационные услуги имеют существенное воздействие на развитие мирового сообщества. Если нам известна телефонная плотность страны, то мы можем оценить уровень её технического и экономического развития. В слаборазвитых странах плотность стационарных (неподвижных) телефонов не превышает 10 телефонов на 1000 жителей; в развитых странах, например в Северной Америке и Европе, она составляет приблизительно 500 – 600 телефонов на 1000 жителей. Экономическое и культурное развитие развивающихся стран зависит (в дополнение к многим другим факторам) от наличия эффективных телекоммуникационных услуг. Локальная сеть (ЛВС), к которой подключен наш компьютер, связана с ЛВС других участков, расположенных всюду по нашему университету. Это необходимо для эффективности совместной работы различных отделов. Мы общаемсяежедневнои с людьми в других организациях с помощью электронной почты, телефонов, факсимиле и мобильных телефонов. Это происходит в масштабе организаций, в масштабе страны и в международном масштабе.

Телекоммуникации играют существенную роль и во многих областях повседневной жизни . Каждый из нас ежедневно использует не только телекоммуникационные услуги, но и услуги которые опираются на телекоммуникации. Вот – некоторые примеры услуг, которые зависят от телекоммуникаций: банковское дело, банковские автоматы, электронная коммерция; авиация, железная дорога, заказ билетов; продажи, оптовая торговля и обработка заказов; платежи с помощью кредитной карточки в магазинах; заказ гостиничных номеров туристическими агентствами; закупки материалов промышленностью; правительственные операции.

Контрольные вопросы:

1. Понятие сети. Назовите возможности сети.

2. В каком году появилось первая сеть, как она называлась и где?

3. Назовите основные компоненты сети.

4. Перечислите показатели компьютерных сетей.

5. Охарактеризуйте уровни эталонной модели взаимодействия открытых систем.

6. Дать определения понятиям «протокол», «интерфейс», «прозрачность», «сетевая операционная система».

7. Какие компоненты включает техническое обеспечение компьютерных сетей? Охарактеризуйте их.

8. Назовите типы сетей.

9. Приведите классификацию сетей.

10. Опишите преимущества локально-вычислительных сетей.

11. Дайте характеристику основным аппаратным компонентам ЛВС.

12. Чем отличаются друг от друга модели «файл-сервер» и «клиент-сервер»?

13. Охарактеризуйте кабели, применяемые в большинстве сетей.

14. Какие технологии используются для передачи по кабелю кодированных сигналов?

15. Что такое трансивер? Для чего он предназначен?

16. Назовите преимущества и виды беспроводных сетей.

17. Опишите методы доступа в ЛВС

18. Дать понятие телекоммуникационной системе.

19. Перечислите типы телекоммуникационных систем.

20. Охарактеризуйте сети подвижной связи.


Тема 9. Сеть Internet

Что такое телекоммуникации?

Телекоммуникация - это передача знаков, сигналов, сообщений, письменного текста, изображений, звуков или сведений любого рода посредством проводных, радио-оптических или других электромагнитных систем. Телекоммуникация происходит, когда при обмене информацией между участниками связи используются технологии. Передача происходит либо электрически через физические носители, такие как кабели, либо с помощью электромагнитного излучения. Пути схожих передач часто разделены на каналы связи, что составляет преимущества мультиплексирования. Этот термин часто используется во множественном числе - телекоммуникации, поскольку включает в себя множество различных технологий.

Ранние средства связи на расстоянии включали в себя визуальные сигналы, такие как маяки, дымовые сигналы, семафорный телеграф, сигнальные флаги и оптические гелиографы. Другие виды дальней связи, используемые в прошлом - это звуковые сообщения, такие как закодированный барабанный бой, звук сигнальной трубы и громкие свистки. В технологиях дальней связи 20-го и 21-го веков, как правило, использовались электрические и электромагнитные технологии, такие как телеграф, телефон и телетайп, сетевые коммуникации, радио, микроволновая передача, оптоволоконные линии и спутники связи.

Революция в беспроводной связи произошла в первом десятилетии 20-го века благодаря новаторским разработкам в области радиосвязи Гульельмо Маркони, нобелевского лауреата по физике 1909 года. В число других известных первых изобретателей и разработчиков в области электрических и электронных телекоммуникаций входят Чарльз Уитстон и Сэмюэль Морзе (изобретатели телеграфа), Александр Грэхем Белл (изобретатель телефона), Эдвин Армстронг и Ли де Форест (изобретатели радио), а также Владимир Зворыкин, Джон Лоуги Бэрд и Фило Фарнсуорт (изобретатели и разработчики телевидения).

Происхождение названия "Телекоммуникации"

Слово "телекоммуникации" представляет собой соединение греческой приставки теле- (τηλε-), что означает "далеко" или "издалека" и латинского - "communicare" - "делать общим", "связывать". Его современное использование заимствовано из французского, потому что оно было использовано в этом значении в 1904 году французским инженером и романистом Едуаром Эстаунье. Слово "коммуникация" вошло в английский язык в конце 14-го века. Оно происходит от старофранцузского "сomunicación", которое, в свою очередь, произошло от латинского "communicationem" (в именительном падеже "communicatio"), существительное от основы причастия прошедшего времени "communicare" - "делить", "разделить"; "общаться", "передавать", "сообщать"; "присоединять", "объединять", "делать общим" от "communis" - общее.

История развития телекоммуникаций

Маяки и голуби

В средние века обычно использовались цепи сигнальных вышек на возвышенностях, как средство ретрансляции сигнала. Эти сигнальные цепи обладали тем недостатком, что могли передавать только один бит информации, так что смысл сообщения, такого как "замечен враг " должен был быть заранее согласован. Один известный пример их использования был во время испанской Армады, когда цепь сигнальных вышек (маяков) передавала сигнал из Плимута в Лондон.

В 1792 году Шапп, французский инженер, построил первую стационарную систему визуальной телеграфии (или семафорной линии) между Лиллем и Парижем. Однако, семафор испытывал необходимость в квалифицированных операторах и дорогостоящих башнях, размещаемых с интервалом от десяти до тридцати километров. В результате конкуренции со стороны электрического телеграфа, последняя коммерческая семафорная линия прекратила свою работу ​​в 1880 году.

Голуби в качестве доставщиков почты иногда использовались в различных культурах на протяжении всей истории человечества. Голубиная почта, как полагают, зародилась у персов и применялась римлянами как вспомогательное средство. У Фронтинуаса, упоминается использование Юлием Цезарем почтовых голубей в качестве посыльных при завоевания Галлии. Греки, также передавали имена победителей Олимпийских игр в разные города, посредством почтовых голубей. В начале 19-го века, голландское правительство применяло такую почтовую систему на островах Ява и Суматра. А в 1849 году Пол Джулиус Ройтер организовал голубиную почту для доставки биржевой информации между Аахеном и Брюсселем, которая действовала в течение года, пока между этими городами не появилась телеграфная связь.

Телеграф и телефон

Сэр Чарльз Уитстон и сэр Уильям Фотерджил Кук изобрели электрический телеграф в 1837. Кроме того, считается, что первый коммерческий электрический телеграф был построен Уитстоном и Куком и открыт 9 апреля 1839 года. Оба изобретателя рассматривали свое устройство, как "усовершенствование (к тому времени уже существовавшего) электромагнитного телеграфа", а не как новое устройство.

Сэмюэль Морзе независимо разработал версию электрического телеграфа, продемонстрированную 2 сентября 1837 года. Код, разработанный им, был важным шагом вперед по сравнению с методом сигнализации Уитстона. Первый трансатлантический телеграфный кабель был успешно проложен 27 июля 1866 года, что позволило впервые осуществить трансатлантическую передачу данных.

Обычный телефон был изобретен Александром Беллом и Элиша Греем в 1876 году независимо друг от друга. Антонио Меуччи был изобретателем первого устройства, которое позволяло производить электрическую передачу голоса по линии ещё в 1849 году. Однако в устройстве Меуччи было мало практической ценности, поскольку оно основывалось на электрофонном эффекте и, таким образом, требовалось размещать приемник в рот пользователям, чтобы "слышать", что было сказано. Первые коммерческие службы телефонной связи появились в 1878 и 1879 годах по обе стороны Атлантики в городах Нью-Хейвене и Лондоне.

В 1832 году Джеймс Линдсей продемонстрировал своим ученикам в классе сеанс беспроволочной телеграфии. К 1854 году он смог продемонстрировать передачу через реку Ферт-оф-Тей из Данди в Вудхэвен, Шотландию, на расстоянии двух миль (3 км), с использованием воды в качестве передающей среды. В декабре 1901 года, Гульельмо Маркони установил беспроводную связь между Сент-Джонс, Ньюфаундленд (Канада) и Полдху, Корнуолл (Англия), что принесло ему в 1909 году Нобелевскую премию по физике (которую он разделил с Карлом Брауном). Хотя, радиосвязь на короткие расстояния уже была продемонстрирована ещё в 1893 году, Николой Тесла перед Национальной ассоциацией электрического света.

25 марта 1925 года Джон Логи Бэрд сумел продемонстрировать передачу движущихся изображений в лондонском универмаге Селфриджес. Устройство Бэрда было основано на диске Нипкова и стало известно под названием механическое телевидение. Оно легло в основу экспериментальных передач, сделанных Британской радиовещательной корпорацией, начиная 30 сентября 1929 года. Тем не менее, большинство телевизоров 20-ого века было создано на основе электронно-лучевой трубки, изобретенной К. Брауном. Первый образец такого многообещающего телевидения был произведен и продемонстрирован своей семье Фарнсуортом 7 сентября 1927 года.

Компьютеры и Интернет

11 сентября 1940 года Джордж Стибиц передал задачу для своего калькулятора комплексных чисел в Нью-Йорке, используя телетайп, и получил в ответ результаты расчетов в Дартмутском колледже в Нью-Гемпшире. Такая конфигурация централизованного компьютера (ЭВМ) с удаленными простыми терминалами оставалась популярной и в 1970-е годы. Тем не менее, уже в 1960-х годах, начали исследовать коммутацию пакетов - технологию, которая посылает сообщение по частям к месту назначения в асинхронном режиме без прохождения через централизованную ЭВМ. Сеть с четырьмя узлами, появившаяся 5 декабря 1969 года, стала прообразом ARPANET, которая к 1981 году разрослась до 213 узлов. ARPANET в конце концов слилась с другими сетями, так появился Интернет. В то время, как развитие Интернета было в центре внимания Инжене́рного Совета Интернета (IETF), опубликовавшего серию рабочих предложений, другие сетевые разработки, такие как локальная сеть (LAN), Ethernet (1983) и маркер протокола кольцо (1984) происходили в промышленных лабораториях.

Информационные технологии

Современные телекоммуникации основаны на ряде ключевых концепций, которые прошли путь прогрессивного развития и улучшений на протяжении более ста лет.

Основные элементы телекоммуникаций

Телекоммуникационные технологии в первую очередь могут быть разделены на проводные и беспроводные методы. Хотя, в целом, базовая телекоммуникационная система состоит из трех основных частей, которые всегда присутствуют в той или иной форме:

Передатчик, который принимает информацию и преобразует её в сигнал.

Среда передачи, которая также называется физическим каналом, несущим сигнал. Примером этого может служить "канал свободного пространства ".

Приемник, который принимает сигнал из канала и преобразует его обратно в полезную для получателя информацию.

Например, в радиовещательной станции усилитель большой мощности радиостанции является передатчиком и передающая антенна является интерфейсом между усилителем мощности и "каналом свободного пространства ". Свободное пространство является передающей средой и антенна приемника является интерфейсом между "каналом свободного пространства " и приемным устройством. Затем приемник радио получает радиосигнал, где он преобразуется из электричества в звук, который могут услышать люди.

Иногда встречаются, телекоммуникационные системы "Duplex" - системы с двусторонней связью, объединяющие в одной коробке и передатчик, и приемник, то есть приемопередатчики. Например, сотовый телефон является приемопередатчиком. Электронная схема передатчика и электроника приемника внутри трансивера в действительности вполне независимы друг от друга. Это можно легко объяснить тем фактом, что радиопередатчики содержат усилители мощности, которые работают с электрическими мощностями, порядка нескольких ватт или киловатт, но радиоприемники имеют дело с радиосигналами, мощность которых порядка нескольких микроватт или нановатт. Следовательно, трансиверы необходимо тщательно проектировать и монтировать, чтобы изолировать высокомощную часть схемы от маломощной части, чтобы не создавались помехи.

Телекоммуникации через фиксированные линии называются двухточечным соединением, потому что связь здесь осуществляется между одним передатчиком и одним приемником. Телекоммуникации, осуществляемые посредством радиопередачи, называются широковещательной связью, потому что они осуществляются между одним мощным передатчиком и многочисленными маломощными, но чувствительными радиоприемниками.

Телекоммуникации, в которых множество передатчиков и несколько приемников были разработаны, чтобы совместно использовать один и тот же физический канал, называются мультиплекс системы. Совместное использование физических каналов с использованием мультиплексирования часто дает очень значительное сокращение расходов. Мультиплекс системы размещаются в телекоммуникационных сетях и мультиплексированные сигналы коммутируются узлами с необходимым приемным терминалом.

Аналоговая и цифровая связь

Коммуникационные знаки могут быть переданы либо посредством аналоговых, либо посредством цифровых сигналов. Существуют аналоговые системы связи и цифровые системы связи. При аналоговой системе, сигнал непрерывно изменяется вместе с изменением информации. В цифровом системе, информация кодируется в виде набора дискретных значений (например, набор единиц и нулей). Во время распространения и приема, информация, содержащаяся в аналоговых сигналах, неизбежно ухудшается из-за нежелательного физического шума. Выходной сигнал передатчика является практически бесшумным. Как правило, шум в системе связи, можно выразить в виде прибавления или вычитания из желательного сигнала случайной помехи. Эта форма шума называется аддитивным шумом, учитывая, что шум может быть отрицательным или положительным в разные моменты времени. Шум, который не является аддитивным является шумом гораздо более сложного для описания и анализа вида.

С другой стороны, если добавка раздражающего воздействия шума не превышает определенный порог, то информация, содержащаяся в цифровом сигнале, не будет искажаться. Устойчивость к шуму является ключевым преимуществом цифровых сигналов по сравнению с аналоговыми сигналами.

Телекоммуникационные сети

Телекоммуникационная сеть представляет собой совокупность передатчиков, приемников и каналов связи, которые обмениваются сообщениями. Некоторые цифровые сети связи содержат один или несколько маршрутизаторов, которые работают вместе, чтобы передавать информацию именно тому пользователю, для которого она предназначена. Сеть аналоговых коммуникаций состоит из одного или нескольких коммутаторов, которые устанавливают связь между двумя или несколькими пользователями. Для обоих типов сетей, могут понадобиться повторители, чтобы усилить или воссоздать сигнал при передаче на большое расстояние. Это делается для борьбы с ослаблениями, которые могут сделать сигнал неотличимым от шума. Еще одним преимуществом цифровых систем по сравнению с аналоговыми является то, что их выходное значение легче хранить в памяти в виде двух состояний напряжения (высокий уровень и низкий уровень) , чем значения, непрерывно изменяющиеся в диапазоне состояний.

Каналы связи

Термин "канал" имеет два различных значения. В одном смысле, канал является физическим носителем, который несет сигнал между передатчиком и приемником. Например, атмосфера для звуковых коммуникаций, оптоволокно для некоторых видов оптической связи, коаксиальный кабель для связи посредством напряжений и электрических токов в них, и свободное пространство для коммуникации с использованием видимого света, инфракрасных волн, ультрафиолетового света и радиоволн. Этот последний канал называется "каналом свободного пространства ". Передача радиоволн от одного места к другому не зависит от наличия или отсутствия атмосферы между ними. Радиоволны проходят через идеальный вакуум так же легко, как они путешествуют по воздуху, туман, облака, или любую другую газовую среду.

Другое значение термина "канал" рассматривается в области телекоммуникаций, в смысле канала связи, который является частью передающей среды так, что вся среда может быть использована для передачи нескольких потоков данных одновременно. Например, одна радиостанция может транслировать радиоволны в свободном пространстве на частотах в районе 94,5 МГц (мегагерц), в то время как другая радиостанция может одновременно транслировать радиоволны на частотах в районе 96,1 МГц. Каждая радиостанция будет передавать радиоволны по полосе частот около 180 кГц (килогерц), с центром на частотах, указанных выше, которые называются «несущие частоты". Каждая станция в данном примере отстоит от соседних станций на 200 кГц, а разница между 200 кГц и 180 кГц (20 кГц), является инженерным допуском, учитывающим недостатки в системе связи.

В приведенном выше примере, "канал свободного пространства " был разделен на каналы связи в соответствии с частотами, и для каждого канала назначена отдельная полоса частот для передачи радиоволн. Эта система разделения среды в каналах в соответствии с частотой, называется "мультиплексирование с частотным разделением каналов". Другой термин для обозначения того же принципа называется "спектральным уплотнением каналов", которое чаще всего используется в оптической связи, когда несколько передатчиков используют одну и ту же физическую среду.

Другой способ разделения коммуникационной среды на каналы заключается в том, чтобы выделить каждому отправителю повторяющийся отрезок времени ("временной интервал", например, 20 миллисекунд из каждой секунды) и разрешить каждому отправителю отправлять сообщения только в пределах этого, выделенного данному отправителю, промежутка времени. Этот метод разделения среды на каналы связи, называется «мультиплексированием с разделением по времени" (TDM), и используется в оптоволоконной связи. Некоторые системы радиосвязи используют TDM в пределах выделенного канала FDM. Таким образом, эти системы используют гибрид TDM и FDM.

Модуляция

Формирование сигнала для передачи информации называется модуляцией. Модуляция может быть использована для представления цифрового сообщения в качестве аналогового сигнала. Такой вид модуляции обычно называется "манипуляцией" - термин, унаследованный от применения кода Морзе в области телекоммуникаций и подразделяется на несколько методов манипуляции (к ним относятся фазовая манипуляция, частотная манипуляция и амплитудная манипуляция). В "Bluetooth", например, используется фазовая манипуляция для обмена информацией между различными устройствами. Кроме того, существует манипуляция, комбинирующая изменения фазы и амплитуды, которая называется (на жаргоне данной области) квадратурной амплитудной манипуляцией (КАМ) и используются в системах цифрового радио с высокой пропускной способностью.

Модуляция может также использоваться для передачи низкочастотных аналоговых сигналов на более высоких частотах. Это полезно, так как аналоговые низкочастотные сигналы не могут быть эффективно переданы через свободное пространство. Следовательно, информация из аналогового низкочастотного сигнала должна быть внедрена в сигнал высокой частоты (известной как "несущая волна") перед передачей. Есть несколько различных схем модуляции, доступных для достижения этой цели, два самых основных метода модуляции - амплитудная модуляция (AM) и частотная модуляция (ЧМ). Примером этого процесса является "внедрение" голоса диджея в несущую волну частоты 96 МГц с использованием частотной модуляции (голос затем будет "выловлен" радиоприемником на частоте "96 FM"). Кроме того, модуляция имеет то преимущество, что она может использовать мультиплексирование с частотным разделением (FDM).

Телекоммуникации в обществе

Телекоммуникации имеют важное социальное, культурное и экономическое влияние на современное общество. В 2008 году доходы в телекоммуникационной отрасли составили $ 4,7 трлн, или чуть менее 3 % от валового мирового продукта (по официальному курсу).

Влияние информационных технологий на экономику

Микроэкономика

На микроэкономическом уровне, компании использовали телекоммуникации для развития глобальных бизнес-империй. Это само собой разумеющееся в случае интернет-магазина Amazon.com, но, согласно академику Эдварду Ленерту, даже обычный розничный торговец Walmart извлек выгоду благодаря лучшей телекоммуникационной инфраструктуре по сравнению с конкурентами. В городах по всему миру домовладельцы используют свои телефоны, чтобы заказывать и организовывать различные домашние услуги, начиная от поставок пиццы до услуг электриков. Даже в относительно бедных слоях общества было отмечено использование электросвязи для собственной пользы. В округе Бангладеш Нарсингди изолированные сельские жители используют сотовые телефоны для заказов товаров непосредственно у оптовиков, чтобы приобретать товары по более выгодной цене. В Кот-д"Ивуаре, производители кофе отслеживают по мобильным телефонам почасовые изменения цен на кофе и продают его по лучшей цене.

Макроэкономика

На макроэкономическом уровне, Ларс-Хендрик Роллер и Леонард Вейверма предложили причинно-следственную связь между хорошей телекоммуникационной инфраструктурой и экономическим ростом. Мало кто оспаривает существование корреляции, хотя некоторые утверждают, что неправильно рассматривать это отношение, как причинное.

В связи с получением экономических преимуществ при использовании хорошей телекоммуникационной инфраструктуры, растет беспокойство по поводу неравного доступа к услугам электросвязи в различных стран мира, называемое цифровым неравенством. В 2003 году исследование, проведенное Международным союзом электросвязи (МСЭ) показал, что примерно в 1/3 стран на каждые 20 человек приходится менее одного мобильного телефона и в 1/3 стран на каждые 20 человек приходится менее одного стационарного телефона. В плане доступа к Интернету, примерно в половине всех стран на каждые 20 человек приходится менее одного выхода в Интернет. Исходя из этой информации и данных об уровне образования в МСЭ был разработан показатель, который измеряет общую возможность доступа граждан к информационным и коммуникационным технологиям. По данному показателю Швеция, Дания и Исландия входят в тройку лидеров, в то время как африканские страны Нигерия, Буркина-Фасо и Мали замыкают данный рейтинг.

Роль коммуникаций в современном мире

Телекоммуникации играют значительную роль в общественных отношениях. В виду того, что в такие устройства как телефон изначально представляли практическую ценность (например, способность вести бизнес или заказ услуг), то совсем не учитывался их социальный аспект. Так продолжалось до конца 1920-х годов, а 1930-е годы социальные аспекты устройства стали важной темой в продвижении телефонов. Новые рекламные акции обращались теперь к эмоциям потребителя, подчеркивая важность социальных разговоров и желания оставаться на связи с семьей и друзьями.

С тех пор роль, которую телекоммуникации играют в общественных отношениях приобретает все большее значение. В последние годы популярность сайтов социальных сетей резко возросло. Эти сайты позволяют пользователям общаться друг с другом, а также обмениваться фотографиями, событиями и видеть статусы и профили других пользователей. В профилях можно указать возраст, интересы, сексуальные предпочтения и статус отношений. Таким образом, эти сайты могут играть важную роль во всем, от организации общественных движений до ухаживаний.

До возникновения сайтов социальных сетей, такие технологии, как служба коротких сообщений (SMS) и телефон также оказывали значительное влияние на социальное взаимодействие. В 2000 году группа по маркетинговым исследованиям Ipsos MORI сообщила, что 81% пользователей в возрасте от 15 до 24 лет в Соединенном Королевстве использовали службу коротких сообщений для координации общественных отношений и 42% - для флирта.

Важность телекоммуникаций в жизни человека

В культурном плане, телекоммуникации расширили возможности граждан на получение доступа к музыке и кино. С помощью телевидения, люди могут смотреть фильмы, которые они раньше не видели в своем собственном доме, не выезжая в видеомагазин или кинотеатр. С помощью радио и Интернета, люди могут слушать музыку, которую они никогда раньше не слышали, не посещая музыкальный магазин.

Телекоммуникации также изменили способ получения новостей. Согласно исследованиям некоммерческой организации Pew Internet и American Life Project за 2006 год из опрошенных чуть более 3000 американцев большинство указали в качестве источника новостей - телевизор, радио или газеты.

Телекоммуникации оказали и значительное влияние на рекламу. TNS Media Intelligence сообщила, что в 2007 году, 58% расходов на рекламу в Соединенных Штатах было потрачено на средства массовой информации, зависящих от телекоммуникационных услуг.

Международный союз электросвязи

Многие страны приняли законодательство, которое соответствует требованиям Регламента международной электросвязи, установленных Международным союзом электросвязи (МСЭ), который является "ведущим учреждением ООН в области информационно-коммуникационных технологий». В 1947 году в Атлантик-Сити конференция МСЭ решила "предоставить международную защиту всех частот, зарегистрированных в новом международном списке частот и используемых в соответствии с Регламентом радиосвязи." Согласно Регламента радиосвязи МСЭ, принятых в Атлантик-Сити, все частоты, указанные в международной регистрации частот, рассмотренные Советом и зарегистрированные в Международном Реестре частот "имеют право на международную защиту от вредных помех."

С учетом глобальных перспектив происходили политические дебаты и принимались законодательные акты, касающиеся управления электросвязью и вещанием. В истории вещания случались и дискуссии в отношении приравнивания к обычной связи, такой как печать, современных телекоммуникаций, таких как радиовещание. С началом Второй мировой войны произошел взрывной рост международного пропагандистского вещания Страны, их правительства, мятежники, террористы и народное ополчение использовали все возможные методы телекоммуникаций и телерадиовещания с целью продвижения своей пропаганды. Патриотическая пропаганда политических движений и колонизации началась с середины 1930-х. В 1936 году BBC вела пропагандистские передачи в арабском мире частично противопоставляя свои трансляции подобным трансляциям из Италии, которая также имела колониальные интересы в Северной Африке.

Современные повстанцы, такие как те, что принимали участие в последней войне в Ираке, часто используют запугивающие телефонные звонки, SMS-сообщения и распространение изощренных видео нападения на войска коалиции, участвующей в антитеррористической операции. "Мятежники-сунниты даже имеют свою собственную телевизионную станцию, Аль-Zawraa, которая будучи запрещенной иракским правительством, по-прежнему вещает из города Эрбиль, Иракский Курдистан, даже после того, как под давлением коалиции ему приходилось менять спутниковый хостинг по несколько раз."

Современные средства массовой информации

Продажи телекоммуникационного оборудования

Согласно данным, собранным Гартнер Арс-текника, было произведена продажа основного пользовательского телекоммуникационного оборудования во всем мире в миллионах единиц:

Телефон

В телефонной сети один абонент подключается к другому абоненту посредством переключателей на различных телефонных станциях. Переключатели образуют электрическое соединение между двумя пользователями и установки этих переключателей определяются в электронном виде, когда вызывающий абонент набирает номер. После того, как соединение установлено, голос вызывающего абонента преобразуется в электрический сигнал с помощью небольшого микрофона в телефонной трубке вызывающего абонента. Этот электрический сигнал передается через сеть пользователю на другом конце, где и преобразуется обратно в звук небольшого динамика в трубке вызываемого абонента.

Стационарные телефоны в большинстве жилых домов являются аналоговыми, то есть голос говорящего непосредственно определяет напряжение сигнала. Несмотря на то, что вызовы на короткие расстояния могут быть обработаны от начала и до конца как аналоговые сигналы, провайдеры телефонных услуг все чаще и чаще осуществляют сквозное преобразование входящих сигналов в цифровых сигналов для передачи. Преимуществом такого подхода является то, что оцифрованные речевые данные могут передаваться совместно с данными из Интернета и могут быть полностью воспроизведены при осуществлении связи на большое расстояние (в отличие от аналоговых сигналов, которые неизбежно будут искажены шумом).

Мобильные телефоны оказали значительное влияние на телефонные сети. Число абонентов мобильной связи в настоящее время превышает число абонентов стационарной связи. Продажи мобильных телефонов в 2005 году составили 816,6 млн. с учетом того, что эта цифра почти поровну распределена между рынками Азии / Тихого океана (204 млн.), Западной Европы (164 млн.), ЦЕБВА (Центральная Европа, Ближний Восток и Африка) (153,5 млн.) , Северной Америки (148 млн.) и Латинской Америки (102 млн.). С учетом новых подписок за пять лет с 1999 года, Африка опережает другие рынки с ростом 58,2%. Все чаще эти телефоны обслуживаются системами, в которых голосовые сообщения передаются в цифровом виде, таких как GSM или W-CDMA и сокращается число аналоговых систем, таких как AMPS.

Также произошли кардинальные изменения в телефонной связи, оставшиеся за кадром. Начиная с деятельности ТАТ-8 в 1988 году, 1990-е годы увидели широкое внедрение систем на основе оптоволокна. Преимущество коммуникаций с применением оптоволокна в том, что они предлагают кардинальное увеличение пропускной способности. Собственно, ТАТ-8 был в состоянии поддерживать в 10 раз больше телефонных звонков, чем самый современный медный кабель, проложенный в ту пору, а современные оптоволоконные кабели способны поддерживать в 25 раз больше телефонных звонков, чем поддерживалось ТАТ-8. Это увеличение пропускной способности обусловлено целым рядом факторов: Во-первых, оптические волокна физически намного меньше, чем конкурирующие технологии. Во-вторых, они не страдают от перекрестных помех, а это означает то, что несколько сотен из них могут быть легко собраны вместе в одном кабеле. И, наконец, улучшения в мультиплексировании привели к экспоненциальному росту пропускной способности одного волокна.

Коммуникации во многих современных оптоволоконных сетях осуществляются согласно протокола, известного как Асинхронный режим передачи (ATM). Протокол ATM позволяет осуществлять совместную передачу данных. Он подходит для телефонных сетей общего пользования, поскольку устанавливает путь для данных через сеть и связывает соглашение о трафике с этим путем. Соглашение о трафике, по существу, соглашение между клиентом и сетью о том, как сеть должна обрабатывать данные; если сеть не может отвечать соглашению о трафике, то соединение с такой сетью отклоняется. Это важно, потому что телефонные соединения должны происходить с гарантированной поддержкой постоянной скорости передачи, что обеспечит передачу голоса вызывающего абонента полностью без задержек или провалов. Есть конкуренты ATM, такие как многопротокольная коммутация по меткам (MPLS), которые выполняют аналогичную задачу и, как ожидается, вытеснят ATM в будущем.

Радио и телевидение

В системе широковещательной передачи центральная вещательная вышка большой мощности передает высокочастотную электромагнитную волну многочисленным маломощным приемникам. Высокочастотная волна, посланная вышкой, модулируется сигналом, содержащим визуальную или звуковую информацию. Приемник, в свою очередь, настроен таким образом, чтобы принять и усилить высокочастотную волну и, используя демодулятор, выделить сигнал, содержащий визуальную или звуковую информацию. Широковещательный сигнал может быть как аналоговым (сигнал изменяется непрерывно вместе с информацией) или цифровой (информация кодируется в виде набора дискретных значений).

Индустрия вещательных СМИ вступила в критический поворотный этап своего развития с переходом многих стран от аналогового к цифровому телевещанию. Этот шаг стал возможным благодаря производству дешевых, быстрых и более функциональных интегральных схем. Главным преимуществом цифрового вещания является то, что оно избавлено от ряда недостатков, характерных для традиционных аналоговых передач. На телевизионной картинке это проявляется устранением проблем, таких как снежные картины, ореолы и другие искажения. Это происходит из-за характера аналоговой передачи, что означает, искажения, вызванные шумом, будут заметны в конечном результате. Цифровая передача преодолевает эту проблему, так как цифровые сигналы восстанавливаются до дискретных значений при приеме и, следовательно, малые возмущения не влияют на конечный результат. В упрощенном примере, если бинарное сообщение 1011 передавалось с амплитудой сигналов: , а полученные сигналы имеют амплитуды: , то при декодировании получаем в двоичном сообщении 1011 - идеальное воспроизведение того, что было отправлено. Из этого примера, можно заметить проблему цифровой передачи, заключающейся в том, что, если шум достаточно велик, то он может существенно изменить декодированное сообщение. Используя прямую коррекцию ошибок, приемник может исправить несколько битовых ошибок в полученном сообщении, но слишком большое количество шума приведет к малопонятным выходным сигналам и, следовательно, нарушению передачи.

В цифровом телевизионном вещании, существует три конкурирующих стандарта, которые, вероятно, будут приняты во всем мире. Это ATSC, DVB и ISDB стандарты. Все три стандарта используют MPEG-2 для сжатия видео. ATSC использует Dolby Digital AC-3 для сжатия аудио, ISDB использует Advanced Audio Coding (MPEG-2 Часть 7) и DVB не имеет стандарт для сжатия звука, но, как правило, использует MPEG-1 Часть 3 Layer 2. Выбор модуляции также изменяется от схемы к схеме. В цифровом аудиовещании, стандарты гораздо более унифицированы практически во всех странах, решивших принять стандарт Digital Audio Broadcasting (также известный как стандарт Эврика 147). Исключение составляют Соединенные Штаты, которые выбрали HD Radio. HD Radio, в отличие от Эврика 147, основан на способе передачи, известном как IBOC, что позволяет осуществлять передачу цифровой информации обычными АМ или ЧМ аналоговыми передатчиками.

Тем не менее, несмотря на ожидание перехода на "цифровое", аналоговое телевидение всё ещё передается в большинстве стран. Исключением являются Соединенные Штаты, где прекращено аналоговое телевизионное вещание (всеми, кроме телевизионных станций очень малой мощности) с 12 июня 2009 года после двойной отсрочки переключения. В Кении, также прекратилось аналоговое телевизионное вещание в декабре 2014 года, после многократных переносов даты. Для аналогового телевидения, есть три стандарта, используемых для трансляции цветного телевидения. Они известны как PAL (немецкая разработка), NTSC (Североамериканская разработка) и SECAM (французская разработка). Важно понимать, что эти способы передачи цветного телевидения не имеют ничего общего со стандартами черно-белого телевидения, которые также различные в разных странах. Для аналогового радио, переход на цифровое радио затрудняется тем, что аналоговые приемники значительно дешевле цифровых приемников. Выбор модуляции для аналогового радио, как правило, осуществляется между амплитудной (AM) или частотной (FM) модуляциями. Для достижения стереофонического воспроизведения используется амплитудно-модулированная поднесущая для стерео FM.

Интернет

Интернет представляет собой всемирную сеть компьютеров и компьютерных сетей, которые взаимодействуют друг с другом с помощью Интернет-протокола. Любой компьютер в Интернете имеет уникальный IP-адрес, который может быть использован другими компьютерами для направления информации к нему. Следовательно, любой компьютер в сети Интернет может отправить сообщение на любой другой компьютер, используя его IP-адрес. Эти сообщения несут с собой IP-адрес и передающего компьютера, что позволяет осуществлять двустороннюю связь. Интернет - это обмен сообщениями между компьютерами.

По оценкам, 51% информации, передаваемой через двусторонние телекоммуникационные сети в 2000 году было передано через Интернет,большая же часть остальной информации (42%) - через стационарный телефон. К 2007 году Интернет явно доминировал и захватил 97% всей информации в телекоммуникационных сетях (большая часть остальной информации(2%) - с помощью мобильных телефонов. По состоянию на 2008 г. примерно 21,9% мирового населения имеет доступ к сети Интернет с самым высоким уровнем доступа (измеряется в процентах от населения) в Северной Америке (73,6%), в Океании / Австралии (59,5%) и в Европе (48,1 %). В широкополосном доступе лидируют: Исландия (26,7%), в Южная Корея (25,4%) и Нидерланды (25,3%) .

Интернет работает отчасти из-за протоколов, которые определяют, как компьютеры и маршрутизаторы обмениваются данными между собой. Характер компьютерной сетевой связи поддается рассмотрению с позиции многоуровневого подхода, когда одни протоколы в стеке протоколов запускаются более или менее независимо от других протоколов. Это позволяет протоколам более низкого уровня быть настроенными на определенное состояние в сети до тех пор, пока не изменится способ работы протокола более высокого уровня. Практический пример того, почему это важно, состоит в том, что это позволяет Интернет-браузеру выполнить одинаково один и тот же код, независимо от того, подключен компьютер к сети Интернет через Ethernet или Wi-Fi соединение. О протоколах часто говорят с точки зрения их места в эталонной модели OSI, который появился в 1983 году в качестве первого шага в неудачной попытке создать универсально принятый набор сетевых протоколов.

Для Интернета характерно изменение по несколько раз физической среды и канального протокола на протяжении всего маршрута, проходящего пакетами. Это потому, что Интернет не накладывает никаких ограничений на то, какая физическая среда и какие протоколы передачи данных могут использоваться. Это приводит к принятию информации и протоколов, которые наиболее подходящий для ситуации в локальной сети. На практике в большинстве случаев межконтинентальной связи будет использоваться протокол с асинхронным режимом передачи (ATM) или его более современный эквивалент - на основе оптоволокна. Это объясняется тем, что в большинство сеансов межконтинентальной связи в Интернете используют ту же инфраструктуру, что и коммутируемая телефонная сеть общего пользования.

На сетевом уровне происходит стандартизация с интернет протоколом IP, необходимым для логической адресации. Для World Wide Web, эти "IP-адреса" выводятся из "человекочитаемой" формы с использованием системы доменных имен DNS (например, 72.14.207.99 происходящего от www.google.com). На данный момент наиболее широко используемой версией интернет-протокола является версия четыре, но переход к версии шесть неизбежна.

На транспортном уровне, большинство сеансов связи принимает либо протокол управления передачей (TCP) или протокол передачи дейтаграмм пользователя (UDP). TCP используется, когда необходимо, чтобы каждое отправленное сообщение принималось другим компьютером, тогда как UDP используется, когда это просто желательно. В случае TCP, пакеты передаются повторно, если они будут потеряны и упорядочены, прежде чем они будут представлены в более высокие слои. С помощью UDP пакеты не упорядочиваются и повторно не передаются в случае утери. Оба TCP и UDP-пакеты переносят и номера портов, чтобы указать, какое приложение или процесс должен обработать пакет. Поскольку некоторые протоколы прикладного уровня используют определенные порты, сетевые администраторы могут управлять трафиком в соответствии с конкретными требованиями. Например, чтобы ограничить доступ к Интернету, блокируя трафик, предназначенный для конкретного порта или повлиять на работу некоторых приложений путем присвоения приоритета.

Над транспортным уровнем, существуют определенные протоколы, которые иногда используются и свободно помещаются в сессии и презентации слоев, прежде всего это протоколы: Secure Sockets Layer (SSL) и Transport Layer Security (TLS) . Эти протоколы гарантируют, что данные, передаваемые между двумя сторонами, остаются полностью конфиденциальными. И, наконец, на уровне приложений многим из пользователей интернет-протоколов известны такие, как HTTP (веб-браузер), POP3 (электронная почта), FTP (передача файлов), IRC (Internet чат), BitTorrent (общий доступ к файлам) и XMPP (мгновенный обмен сообщениями).

Интернет-протокол для передачи голоса (VoIP) позволяет использовать пакеты данных для синхронных голосовых коммуникаций. Пакеты данных маркируются как пакеты голосовых сообщений и могут иметь приоритет для передачи в режиме реального времени, синхронный разговор менее подвержен конкуренции с другими типами трафика данных, которые могут быть отсроченными (т.е. передача файлов или электронной почты) или быть заранее буферизованными (то есть аудио и видео) без искажений. Это предоставление приоритета хорошо работает, когда сеть имеет достаточную пропускную способность для всех VoIP-вызовов, происходящих одновременно, а в сети включена опция установления приоритетов т.е. частная корпоративная сеть, но Интернет в целом не может быть настроеным таким образом, и поэтому возникает большая разница в качестве VoIP звонков через частную сеть и через Интернет общего пользования.

Локальные и глобальные компьютерные сети

Несмотря на рост Интернета, характеристики локальных вычислительных сетей (ЛВС) - компьютерные сети, которые не выходят за пределы нескольких километров, сохраняют отличие. Это происходит потому, что сети такого масштаба не требуют всех функций, связанных с более крупными сетями и остаются зачастую более рентабельным и эффективным без них. Будучи не связаными с Интернетом, они также имеют преимущества в конфиденциальности и безопасности. Тем не менее, целенаправленное отсутствие прямого подключения к Интернету не обеспечивает гарантированную защиту от хакеров, вооруженных сил или экономически мощных держав. Эти угрозы существуют, если есть какие-либо методы для удаленного подключения к локальной сети.

Глобальные вычислительные сети (WAN) являются частными компьютерными сетями, которые могут распространяться на тысячи километров. Опять же, некоторые из их преимуществ включают в себя конфиденциальность и безопасность. Первоначально локальные и глобальные сети предназначались для вооруженных сил и спецслужб, которые должны держать свои данные в безопасности и тайне.

В середине 1980-х годов появились несколько протоколов связи, чтобы заполнить пробелы между канальным и прикладным уровнями эталонной модели OSI. К ним относятся Appletalk, IPX и NetBIOS с установленным протоколом IPX, доминирующим в начале 1990-х, благодаря своей популярности среди пользователей MS-DOS. TCP / IP, существующий и на данный момент, как правило, использовался только в крупных государственных и научно-исследовательских учреждениях.

Поскольку популярность Интернета возросла и его трафик потребовалось направить в частные сети, TCP / IP протоколы заменили существующие технологии локальной сети. Дополнительные технологии, такие как DHCP, разрешающие компьютерам на основе IP /TCP самонастраиваться в сети. Такие функции осуществляются также в наборах протоколов AppleTalk / IPX / NetBIOS.

Режимы асинхронной передачи (ATM) или многопротокольной коммутации по меткам (MPLS) представляют собой типичные протоколы канального уровня для более крупных сетей, таких как WANs; Ethernet и Token Ring, являются типичными протоколами канального уровня для локальных сетей. Эти протоколы отличаются от прежних протоколов тем, что они являются более простыми, например, они опускают функции, такие как гарантированное качество обслуживания, а также устранение коллизий. Оба эти различия позволяют создавать более экономичные системы.

Несмотря на скромную популярность IBM Token Ring в 1980-х и 1990-х годах, практически все локальные сети в настоящее время используют проводное или беспроводное Ethernet-оборудование. На физическом уровне, большинство проводных Ethernet реализаций используют медные кабели витой пары (в том числе общих 10BASE-T сетей). Тем не менее, в некоторых ранних реализациях использовались более тяжелые коаксиальные кабели, а в недавних реализациях (особенно в высокоскоростных) использовалось оптоволокно. Когда используется оптоволокно, то следует различать многомодовые волокна от одномодовых волокон. Многомодовые волокна можно рассматривать как более толстое оптоволокно, более дешевое в произвдстве, но имеющий недостаток в виде более узкой полезной полосы частот и худшего затухания, а, следовательно, и худшие характеристики дальней связи.

Скорость передачи информации

Эффективный объём информации, вовлеченной в обмен по всему миру посредством двусторонних сетевых телекоммуникаций, возрос с 281 петабайт информации в 1986 году, до 471петабайт в 1993 году, с 2,2 эксабайт в 2000 году до 65 эксабайтов в 2007 году (с учетом оптимального сжатия). Это информационный эквивалент приблизительно соответствует двум страниц газет на человека в день в 1986 году и шесть целым газетам на человека в день к 2007 году. С учётом данного роста, телекоммуникации играют всё большую роль в развитии мировой экономики и сектор мировой телекоммуникационной индустрии составил в 2012 году около 4,7 трлн. долларов. Объем мирового рынка телекоммуникационных услуг составит $ 1,5 трлн в 2010 году, что соответствует 2,4% от валового внутреннего продукта в мире (ВВП).