Меню
Бесплатно
Главная  /  Прошивка  /  Схемы устройств для восстановления(регенерации) гальванических элементов питания (батареек). Особенности некоторых видов гальванических элементов и их краткие характеристики Восстановление гальванических элементов и батарей

Схемы устройств для восстановления(регенерации) гальванических элементов питания (батареек). Особенности некоторых видов гальванических элементов и их краткие характеристики Восстановление гальванических элементов и батарей

Для восстановления работоспособности аккумуляторов (многократно заряжаемых гальванических элементов, основанных на обратимом преобразовании электрической энергии в химическую и наоборот) используют специальные зарядные устройства, позволяющие «закачать» в разряженный аккумулятор очередную порцию энергии. В отличие от аккумуляторов, гальванические элементы и батареи одноразового использования изначально не предлагалось подзаряжать (иначе они и именовались бы по-иному). Однако в процессе эксплуатации некоторых гальванических элементов и батарей выявилась возможность частичного восстановления их свойств путем зарядки.

Для зарядки аккумуляторов используют несколько методов, основным из которых следует считать зарядку постоянным оком. Зачастую расчетное время полной зарядки составляет 0 час. Помимо классического, используют метод зарядки по амперажу (правилу ампер-часов), зарядки пульсирующим и (или) симметричным током, зарядки при постоянном напряжении, ассиметрующей попеременной зарядки-разрядки с регулируемым соотношением и преобладанием зарядной компоненты, экспресс-заряд, заряд ступенчатым током, «плавающий» заряд, компенсационный подзаряд и т.д.

Неплохие результаты дает зарядка аккумулятора током, изменяющимся в соответствии с так называемым «законом ампер-часов» Вудбриджа. В начале зарядки ток максимален, а затем уменьшается по закону, описываемому экспоненциальной кривой. При зарядке в соответствии с «законом ампер-часов» начальный ток может достигать 80% от емкости аккумулятора, в

результате чего время зарядки значительно сокращается.

Каждый из перечисленных способов имеет как преимущества, так и недостатки. Самым распространенным и надежным считается зарядка постоянным током. Появление микросхем стабилизаторов напряжения, позволяющих работать в режиме стабилизации тока, делает применение этого способа еще более привлекательным. Кроме того, только зарядка постоянным током обеспечивает наилучшее восстановление емкости аккумулятора в случае, когда процесс разбивают, как правило, на две ступени: заряжают номинальным током и вдвое меньшим.

Например, номинальное напряжение батареи из четырех аккумуляторов Д-0,25 емкостью 250 мА-ч - 4,8...5 6. Номинальный зарядный ток обычно выбирают равным 0,1 от емкости, т.е. 25 мА. Заряжают таким током до тех пор, пока напряжение на аккумуляторной батарее не достигнет 5,7...5,8 6 при подключенных клеммах зарядного устройства, а затем в течение двух-трех часов продолжают заряжать током около 12 /и/А.

Возможность увеличения срока службы сухих гальванических элементов (метод регенерации) была заложена патентом Эрнста Веера в 1954 г. (Патент США) . Регенерацию осуществляют пропусканием через гальванический элемент или их группу асимметричного переменного тока с соотношением полупериодов 1:10. По данным разных авторов средний срок службы гальванических элементов может быть увеличен таким образом от 4 до 20 раз.

  1. регенерации поддаются элементы, напряжение которых ниже номинала не более чем на 10%;
  2. напряжение для регенерации элемента не должно превышать более чем на 10% номинальное значение;
  3. ток регенерации должен быть в пределах 25...30% от максимального разрядного тока для данного элемента;
  4. время регенерации должно в 4,5...6 раз превышать время разрядки;
  5. регенерацию следует производить непосредственно вслед за разрядкой батареи;
  6. не следует производить регенерацию для элементов с поврежденным цинковым корпусом, с вытекшим электролитом.

Помимо зарядно-разрядных операций для некоторых видов аккумуляторов актуальным вопросом является регенерация (вое-

становление) по мере возможности их исходных свойств, утраченных в результате неправильного хранения и/или эксплуатации.

Приемы «реанимации» и восстановления ресурсов разряженных электрических батарей (сухих гальванических батарей и элементов) в общих чертах похожи и порой отвечают соответствующим процедурам для аккумуляторов.

Устройства для заряда, восстановления или регенерации химических источников тока обычно содержат стабилизатор тока, иногда устройство защиты от перенапряжения или перезарядки, приборы и схемы контроля и регулирования.

Так, например, на практике для никель-кадмиевых аккумуляторов получили распространение несколько типов зарядных устройств.

Зарядное устройство с фиксированным постоянным током. Зарядку аккумулятора прекращают вручную по истечении времени, достаточного для полной зарядки. Зарядный ток должен составлять 0,1 от емкости аккумулятора в течение 12... 15 ч.

Ток зарядки фиксированный. Напряжение на заряжаемом аккумуляторе контролируется пороговым устройством. При достижении заданного напряжения зарядка автоматически прекращается.

Зарядное устройство заряжает аккумулятор постоянным током в течение фиксированного времени. Зарядка автоматически прекращается по истечении, например, 15 ч. Последний вариант зарядного устройства имеет существенный недостаток. Перед зарядкой аккумулятор должен быть разряжен до напряжения 1 6, только тогда при зарядке током 0,1 от емкости аккумулятора в течение 15 ч аккумулятор зарядится до номинальной емкости. В противном случае при зарядке не полностью разряженного аккумулятора в течение указанного времени произойдет его перезарядка, что ведет к сокращению времени службы.

В первых двух вариантах устройств зарядка постоянным стабильным током не является оптимальной. Исследованиями установлено, что в самом начале цикла зарядки аккумулятор наиболее восприимчив к сообщаемому ему количеству электричества. К концу зарядки процесс накопления энергии аккумулятора замедляется.

Устройство для регенерации гальванических элементов и заряда аккумуляторных батарей асимметричным током, содержащее три конденсатора, два диода, первый конденсатор соединен одним выводом с первой входной клеммой, а другим выводом с положительной выходной клеммой устройства, первый диод соединен катодом с положительной выходной клеммой устройства, второй соединен анодом с отрицательной выходной и второй входной клеммами устройства, второй конденсатор соединен одним выводом с первой входной клеммой устройства, а другим выводом с анодом первого диода и катодом второго диода, отличающееся тем, что дополнительно содержит два светодиода, резистор, первый светодиод соединен катодом с положительной выходной клеммой устройства, а анодом соединен последовательно с третьим конденсатором и первой входной клеммой, второй светодиод соединен катодом с отрицательной выходной клеммой устройства, а анодом соединен последовательно с резистором и положительной входной клеммой. 1 ил.

Изобретение относится к электротехнической промышленности и предназначено для заряда, формовки аккумуляторных батарей (АБ) и регенерации гальванических элементов. Известно устройство для регенерации элементов и заряда АБ асимметричным током содержащее источник переменного тока, два конденсатора и два вентиля, анод одного из которых и катод другого подключены к выходным клеммам устройства, источник переменного тока образует с конденсаторами трехлучевую звезду, которая подключена одной конденсаторной ветвью к общей точке вентилей, а другими ветвями к выходным клеммам для подключения заряжаемой батареи. Недостатком этого устройства является то, что нет индикации процесса заряда АБ или регенерации химических элементов. При этом известно устройство для регенерации гальванических элементов и заряда аккумуляторных батарей асимметричным током являющееся аналогом содержащее три конденсатора, два диода, первый конденсатор соединен одним выводом с первой входной клеммой, а другим выводом с положительной выходной клеммой устройства, первый диод соединен катодом с положительной выходной клеммой устройства, первый диод соединен катодом с положительной выходной клеммой устройства, второй соединен анодом с отрицательной выходной и второй входной клеммами устройства, орой конденсатор соединен одним выводом с первой входной клеммой устройства, а другим выводом с анодом первого диода и катодом второго диода. Данное устройство обеспечивает индикацию непосредственно процесса заряда с помощью неоновой индикаторной лампы. Недостатком этого устройства является то, что для функционирования неоновой индикатоpной лампы по целевому назначению необходимо наличие двух дополнительных диодов. Предлагаемое устройство для регенерации гальванических элементов и заряда аккумуляторных батарей асимметричным током, содержащее три конденсатора, два диода, первый конденсатор соединен одним выводом с первой входной клеммой, а другим выводом с положительной выходной клеммой устройства, первый диод соединен катодом с положительной выходной клеммой устройства, второй соединен анодом с отрицательной выходной и второй входной клеммами устройства, второй конденсатор соединен одним выводом с первой входной клеммой устройства, а другим выводом с анодом первого диода и катодом второго диода, дополнительно содержит два светодиода, резистор, первый светодиод соединен катодом с положительной выходной клеммой устройства, а анодом соединен последовательно с третьим конденсатором и первой входной клеммой, второй светодиод соединен катодом с отрицательной выходной клеммой устройства, а анодом соединен последовательно с резистором и положительной выходной клеммой. На чертеже представлена схема предлагаемого устройства. Устройство для регенерации гальванических элементов и заряда аккумуляторных батарей асимметричным током, содержит три конденсатора 1, 2, 3, два диода 4, 5, конденсатор 1 соединен одним выводом с входной клеммой 6, а другим выводом с положительной выходной клеммой 7 устройства, диод 4 соединен катодом с положительной выходной клеммой 7 устройства, диод 5 соединен с анодом с отрицательной выходной клеммой 8 и входной клеммой 9 устройства, конденсатор 2 соединен одним выводом с входной клеммой 6 устройства, а другим выводом с анодом диода 4 и катодом диода 5, два светодиода 10, 11, резистор 12, светодиод 10 соединен катодом с положительной выходной клеммой 7 устройства, а анодом соединен последовательно с конденсатором 3 и входной клеммой 6, светодиод 11 соединен катодом с отрицательной выходной клеммой 8 устройства, а анодом соединен последовательно с резистором 12 и положительной выходной 7 клеммой. Устройство работает следующим образом. На протяжении той части положительного полупериода напряжения сети, когда напряжение на конденсаторе 2 больше ЭДС заряжаемой АБ или регенерируемого элемента (РЭ), через конденсатор 2, диод 4, положительная выходная клемма 7 и АБ или РЭ протекает зарядный ток, а в остальную часть периода АБ или РЭ разряжается через конденсатор 1, входная клемма 5, источник переменного тока, входная клемма 9 и выходная клемма 8. Когда напряжение положительного полупериода достигает напряжения зажигания светодиода 10, он зажигается по цепи: источник переменного тока, входная клемма 6, конденсатор 3, светодиод 10, выходная клемма 7, АБ или РЭ, выходная клемма 8, входная клемма 9, источник переменного тока. Во время отрицательного полупериода светодиод 10 не светится. В случае отсутствия зарядного тока (при разрыве цепи заряда или достаточно большом внутреннем сопротивлении АБ или РЭ) во время отрицательного полупериода напряжения сети конденсатор 1 заряжается до амплитудного значения напряжения сети и это напряжение в течение всего остального полупериода поддерживается неизменным. При этом светодиод 10 не зажигается, так как в течение положительного полупериода разность напряжений на конденсаторе 1 и мгновенным сетевым напряжением недостаточна для зажигания светодиода 10. При заряде АБ или РЭ до напряжения конца заряда зажигается светодиод 11 по цепи: положительная выходная клемма 7, резистор 12, светодиод 11, отрицательная выходная клемма 8. Зажигание светодиода 11 при подключении АБ или РЭ к выходным клеммам 7, 8 и до подключения устройства к источнику переменного тока свидетельствует о нецелесообразности заряда АБ или РЭ.

Формула изобретения

Устройство для регенерации гальванических элементов и заряда аккумуляторных батарей асимметричным током, содержащее три конденсатора, два диода, первый конденсатор соединен одним выводом с первой входной клеммой, а другим выводом с положительной выходной клеммой устройства, первый диод соединен катодом с положительной выходной клеммой устройства, второй соединен анодом с отрицательной выходной и второй входной клеммами устройства, второй конденсатор соединен одним выводом с первой входной клеммой устройства, а другим выводом с анодом первого диода и катодом второго диода, отличающееся тем, что дополнительно содержит два светодиода, резистор, первый светодиод соединен катодом с положительной выходной клеммой устройства, а анодом соединен последовательно с третьим конденсатором и первой входной клеммой, второй светодиод соединен катодом с отрицательной выходной клеммой устройства, а анодом соединен последовательно с резистором и положительной входной клеммой.

Те, кто на даче не имеют электричества, наверняка испытывают определенные неудобства в самых элементарных вещах. Ну ладно там, нет холодильника или телевизора… Но ведь порой даже мобильный телефон подзарядить нет возможности. Запасных аккумуляторов — не напасешься и не навозишься.

Между тем, существует довольно простой способ получить электрический ток достаточный для работы простейших электронных устройств прямо на месте и без больших затрат. Да, лампочку к такому источнику не подключить, но обеспечить электропитанием небольшой радиоприемник или подзарядить мобильник ему вполне по силам. Такой же источник сможет зарядить небольшие аккумуляторы и в походе, пока туристы спят или отдыхают. И что особенно ценно, данный источник стоит буквально копейки, работает независимо ни от каких погодных условий и не имеет вообще никаких подвижных частей.

Принцип работы данного источника тока основан на том, что некоторые металлы образуют между собой т.н. гальванические пары. Т.е. при их соприкосновении образуется простейший гальванический элемент, вырабатывающий электрический ток. Например, по этой причине нельзя соединять напрямую провода из меди и алюминия. В месте их контакта немедленно начинает образовываться закись меди, приводящая к нарушению контакта.

Если два электрода из таких металлов поместить в электролит, они начнут вырабатывать электрический ток. Почему же не использовать этот эффект для того, что бы решить хотя бы одну проблему — с той же зарядкой мобильного телефона в условиях отсутствия электросети.

При устройстве такого простейшего элемента можно использовать в качестве электродов любые медные и железные отрезки проволоки, а лучше — пластины. Пластины дадут бОльший ток. А качестве электролита подойдет сырая земля (грунт), которую лучше пропитать солевым раствором.

Что бы не портить землю на своем участке, лучше насыпать землю в ведра (можно и дырявые) или даже в полиэтиленовые пакеты.

В пакет насыпается земля, обильно поливается соляным раствором и в нее втыкаются два электрода. Если к этим электродам подключить вольтметр, вы увидите, что он показывает наличие напряжения.

Разумеется, напряжение такого элемента невелико — 0,5-1 вольт максимум. А ток, который он вырабатывает 20-50 мА. Но что нам мешает сделать несколько таких элементов и соединить их последовательно! Таким образом мы достигнем необходимого напряжения, достаточного для зарядки аккумулятора мобильного телефона или другого устройства.

Разумеется, такой элемент примитивен, имеет невысокий КПД. Но! Во-первых, он крайне дешев и делается действительно из материалов, которые валяются под ногами — (проволока, обрезки труб, пластины металла). Во-вторых, он не требует никаких телодвижений с вашей стороны после его изготовления. Он необслуживаемый! Один раз сделал — пользуйся весь сезон. Ну разве что поливай периодически, поддерживая влажности грунта. В третьих — сделать его по силам даже школьнику младших классов.

В четвертых — он очень мобилен. Что немаловажно для туристов, например. Разбили стоянку, воткнули электроды в землю, вылили ведро воды и извольте заряжаться. За ночь аккумуляторы фонариков, мобильных телефонов, раций, фотоаппаратов и навигаторов получат необходимую подпитку.

Такими элементами пользовались еще на заре электроники, когда батареи были очень дефицитны и дороги. Теперь же с появлением весьма экономичных и низковольтных электронных приборов массового пользования они возможно кому то снова смогут принести пользу.

Идея восстановления разряженных гальванических элементов подобно аккумуляторным батареям не нова. Восстанавливают элементы с помощью специальных зарядных устройств. Практически установлено, что лучше других поддаются регенерации наиболее распространенные стаканчиковые марганцево-цинковые элементы и батареи, такие, как 3336Л (КБС-Л-0,5), 3336Х (КБС-Х-0,7), 373, 336. Хуже восстанавливаются галетные марганцево-цинковые батареи "Крона ВЦ", БАСГ и другие.

Наилучший способ регенерации химических источников питания - пропускание через них асимметричного переменного тока, имеющего положительную постоянную составляющую. Простейшим источником асимметричного тока является однополупериодный выпрямитель на диоде, шунтированном резистором. Выпрямитель подключают к вторичной низковольтной (5-10 в) обмотке понижающего трансформатора, питающегося от сети переменного тока. Однако такое зарядное устройство имеет невысокий к. п. д.- около 10% и, кроме этого, заряжаемая батарея при Случайном отключении напряжения, питающего трансформатор, может разряжаться.

Лучших результатов можно достигнуть, если применять зарядное устройство, выполненное по схеме, представленной на рис. 1. В этом устройстве вторичная обмотка II питает два отдельных выпрямителя на диодах Д1 и Д2, к выходам которых подключены две заряжаемые батареи Б1 и Б2.

Параллельно диодам Д1 и Д2 включены конденсаторы C1 и С2. На рис. 2 показана осциллограмма тока, проходящего через батарею. Заштрихованная часть периода - это время, в течение которого через батарею протекают импульсы разрядного тока.


рис. 2

Эти импульсы, очевидно, особым образом влияют на ход электрохимических процессов в активных материалах гальванических элементов. Процессы, происходящие при этом, еще недостаточно изучены и описания их нет в популярной литературе. При отсутствии импульсов разрядного тока (что бывает при отсоединении конденсатора, включенного параллельно диоду) регенерация элементов практически прекращалась.

Опытным путем установлено, что марганцево-цинковые гальванические элементы сравнительно мало критичны к величине постоянной составляющей и форме отрицательных импульсов зарядного тока. Это позволяет использовать зарядное устройство без дополнительной регулировки постоянной и переменной составляющих зарядного тока для восстановления, различных элементов и батарей. Отношение постоянной составляющей тока заряда к эффективному значению его переменной составляющей должно быть в пределах 5-25.

Производительность зарядного устройства можно повысить, включая для заряда по несколько элементов последовательно. При этом необходимо учесть, что в процессе заряда э. д. с. элементов может возрастать до 2-2,1.в. Исходя из этого и зная напряжение на вторичной обмотке трансформатора, определяют число одновременно заряжаемых элементов.

Подключать к зарядному устройству батареи типа 3336Л удобнее через лампочку накаливания 2,5в Х 0,2а, играющую роль бареттера и одновременно служащую индикатором степени заряда. По мере восстановления электрического заряда батареи свечение лампочки уменьшается. Элементы типа "Марс" (373) необходимо подключать без лампочки, так как постоянная составляющая зарядного тока такого элемента должна быть 200-400 ма. Элементы 336 подключают группами по три штуки,включенных последовательно. Условия заряда такие же, как и для батарей типа 3336. Зарядный ток для элементов 312, 316 должен быть 30-60 ма. Возможен одновременный заряд больших групп батарей 3336Л (3336Х) непосредственно от сети (без трансформатора) через два включенных последовательно диода Д226Б, параллельно которым включен конденсатор 0,5 мкф с рабочим напряжением 600 в.

Зарядное устройство может быть выполнено на базе трансформатора электробритвы "Молодость", пмеющего две вторичные обмотки с напряжением 7,5 в. Удобно использовать также накальное напряжение 6,3 в любого сетевого лампового радиоприемника. Естественно, то или иное решение выбирают в зависимости от требуемого максимального зарядного тока, определяемого типом восстанавливаемых элементов. Из этого же исходят, выбирая выпрямительные диоды.


рис. 3

Для того, чтобы оценить эффективность данного метода восстановления гальванических элементов и батарей, на рис. 3 представлены графики разрядного напряжения для двух батарей 3336Л при сопротивлении нагрузки Rн=10 ом. Сплошными линиями показаны кривые разряда новых батареи,а пунктирными - после двадцати полных циклов разряд - заряд. Таким образом, работоспособность батарей после двадцатиразового использования еще вполне удовлетворительна.

Сколько же циклов разряд-заряд могут выдерживать гальванические элементы и батареи? Очевидно, это сильно зависит от условий эксплуатации, сроков хранения и других факторов. На рис. 4 показано изменение, времени разряда на нагрузку Rн=10 ом двух батарей 3336Л (кривые 1 и 2) в течение 21 цикла разряд-заряд. Батареи разряжались до напряжения не ниже 2,1 в, режим заряда обеих батарей - одинаков. В течение указанного времени эксплуатации батарей время разряда уменьшилось со 120-130 мин до 50-80 мин, то есть почти вдвое.


рис. 4

Такое же уменьшение емкости допускается техническими условиями в конце установленного максимального срока хранения. Практически удается восстанавливать элементы и батареи до тех пор, пока у них не будут полностью разрушены цинковые стаканчики или не высохнет электролит. Установлено, что больше циклов выдерживают элементы, интенсивно разряжающиеся на мощную нагруэку (например, в фонариках, в блоках питания электробритв). Не следует разряжать элементы и батареи до напряжения ниже 0,7 в на элемент. Восстанавливаемость элементов 373 относительно хуже, так как после 3-6 циклов их емкость резко уменьшается.

О необходимой продолжительности заряда можно сделать, вывод, пользуясь графиком; представленным на рис. 4. При увеличении времени заряда свыше 5 часов восстановленная емкость батарей увеличивается в среднем весьма незначительно. Поэтому можно считать, что при указанных величинах зарядного тока минимальное время восстановления составляет 4-6 часов, причем явных признаков конца заряда мар-ганцево-цинковые элементы не имеют и к перезаряду нечувствительны.

Применение асимметричного тока оказывается полезным также для зарядки и формовки аккумуляторов и аккумуляторных батарей. Этот вопрос, однако, еще требует проверки на практике и может открыть новые интересные возможности аккумуляторов.

Не спешите выбрасывать отработавшие гальванические элементы 373, 343 и др. Часть из них можно восстановить подзарядкой пульсирующим током.

Устройство питается от любого трансформатора, имеющего обмотку с напряжением 6,3 В. Лампа накаливания HL (6,3 В; 0,22 А) выполняет не только сигнальные функции, но и ограничивает зарядный ток элемента, а также предохраняет трансформатор в случае коротких замыканий в цепи заряда. Стабилитрон VD1 типа КС119А ограничивает напряжение заряда элемента. Он может быть заменен набором из последовательно включенных диодов - двух кремниевых и одного германиевого - с допустимым средним током не менее 100 мА. Диоды VD2 и VD3 - любые кремниевые с тем же допустимым средним током. Емкость конденсатора С - от 3 до 5 мкФ на рабочее напряжение не менее 16В.

Цепь из переключателя S1, контрольных гнезд X1, Х2 для подключения вольтметра, кнопки S2 и резистора R с сопротивлением 10 Ом служит для контроля состояния элемента Е до и после подзарядки.

Состояние элемента определяется напряжением без нагрузки и его уменьшением при подключении стандартной нагрузки 10 Ом. Нормальному состоянию соответствует напряжение не менее 1,4 В и его уменьшение не более, чем на 0,2 В. Восстановлению поддаются разряженные элементы без признаков протекания электролита, с напряжением без нагрузки не ниже 1 В. Восстановленные элементы с пониженной нагрузочной способностью (уменьшение напряжения более, чем на 0,62 В при подключении нагрузки 1 Ом) могут работать в электронных часах, транзисторных приемниках и других бытовых приборах с малым потребляемым током.

Напряжение восстановленного элемента лежит обычно в пределах от 1,5 до 1,8 В. Для всех типов элементов минимально необходимое время заряда не превышает 8 часов. О степени заряженности элемента можно также судить по яркости свечения лампы HL. До подключения элемента она светит примерно вполнакала; при подключении разряженного элемента яркость свечения заметно увеличивается, а в конце цикла заряда подключение и отключение элемента почти не вызывает изменения яркости.

Число циклов подзарядки не ограничено, элемент служит до разрушения цинкового стакана и протекания электролита. При подзарядке элементов типа СЦ-30, СЦ-21 и др. (для наручных часов) необходимо последовательно с элементом включить резистор на 300 - 500 Ом.

Элементы батарей типа 336 и др. заряжаются поочередно, для доступа к каждому из них нужно вскрыть картонное донышко батареи.