Меню
Бесплатно
Главная  /  Навигаторы  /  Измерение переменных напряжений. Правила измерения переменного и постоянного тока мультиметром Измерить вольтметром переменного напряжения постоянное напряжение

Измерение переменных напряжений. Правила измерения переменного и постоянного тока мультиметром Измерить вольтметром переменного напряжения постоянное напряжение

Почти каждому из нас рано или поздно доводилось (или еще придется) столкнуться с задачей измерить электрическое напряжение.

Это может понадобиться вам в одной из бесконечного множества бытовых ситуаций, и хорошо бы заранее знать, как и при помощи чего это можно сделать.

Для измерения напряжения вам понадобится всего лишь один прибор под названием "мультиметр" и источник электроэнергии. Измерить напряжение завалявшейся батарейки, блока питания для ноутбука, оголенных проводов в квартире - это одни из наиболее частых применений.

В этой статье мы на примере рассмотрим как измерять напряжение электрической энергии при помощи бытового мультиметра.

В качестве примера, для чего это нужно знать каждому, можно привести несколько бытовых ситуаций: замерив напряжение на батарейке можно понять, насколько она "здорова", или может быть её уже можно выбрасывать; лампа в люстре не горит, хотя лампочка новая - стоит проверить, возможно проблема в проводке; при отключении электричества на щитке в подъезде не лишним будет убедиться, действительно ли вы обесточили всю квартиру. В общем, применений масса.

С задачами разобрались, теперь стоит рассказать о том, что вам для понадобится для измерений. В 99% бытовых ситуаций вам будет нужен лишь источник переменного или постоянного тока и "мультиметр" - прибор измеряющий напряжение, также называемый "тестером", и другие электрические показатели, а конкретно одна из его функций - вольтметр . Для домашних замеров подойдет самая простая модель, которую можно найти в магазине по цене от 200 рублей.

И совсем немного о токе. Напряжение электрического тока измеряется в вольтах (V) . Сам ток может быть постоянным (DCV) или переменным (ACV) . В розетке и домашней проводке ток всегда переменный, а у всего, где есть "+" и "-" (батареек, аккумуляторов и т.д.) постоянный. Первым делом определите, какой ток вы собрались измерять и выберите на мультиметре соответствующее положение переключателя: DCV - постоянный ток, ACV - переменный ток.

Цифровые значения на мультиметре - это максимальные измеряемые показатели. Если вы даже приблизительно не знаете какое напряжение вам предстоит измерить, начните с установки на самое высокое значение.

Стоит учесть, что многие современные мультиметры умеют сами определять какой ток на них подается - постоянный или переменный. Если ваш мультиметр из таких, то вместо положений переключателя DCV и ACV у вас будет одно положение - V. В таком случае просто выставьте его.

Как подключить провода мультиметра

У многих новичков после покупки часто возникает вопрос - куда вставлять провода (а если быть точным, то они называются щупы ) мультиметра и как это правильно сделать.

Большинство мультиметров имеют три разъема для подключения проводов и два провода - черный и красный. Черный провод вставляется в гнездо с надписью COM , красный же в гнездо, где в числе символов есть обозначение V .

Третье гнездо служит для замера высоких токов и для измерения напряжения оно нам не понадобится, а вообще в него при необходимости перетыкается красный провод, а черный всегда остается в одном гнезде.

Как измерить напряжение в розетке

Одной из самых частых задач является измерение напряжение в розетке либо в квартирной проводке. При помощи мультиметра это сделать очень просто. Как мы уже писали выше, в розетках течет переменный ток, поэтому для его измерения нужно выставить переключатель на мультиметре в зону ACV .

Мы знаем, что напряжение должно быть примерно 220 вольт, поэтому если у вас мультиметр как на примере с фотографии выше - выставьте переключатель на отметку больше предполагаемого значения , в данном случае на 750 в диапазоне ACV.

Настроив прибор самое время засунуть пальцы щупы в розетку. Не имеет разницы какой провод в какое отверстие розетки вставлять. В целом здесь бояться нечего, главное держаться за изолированную часть щупов и не касаться металлической их части (хотя сделать это довольно сложно даже при большом желании), а также не допускать их касания друг друга, пока они вставлены в розетку, иначе можно устроить короткое замыкание.

Если вы все сделали правильно на экране вашего мультиметра будет показано текущее напряжение в розетке и вашей внутриквартирной проводке.

В нашем случае это 235.8 вольт - в пределах нормы. Ровно 220V на экране вы никогда не увидите, так что погрешность в +-20 - это нормально.

Как измерить напряжение аккумулятора или батареи

Всевозможные батарейки и различные аккумуляторы, в общем все, где вы видите "+" и "-" - все это источники постоянного электрического тока. Измерить постоянное напряжение ни чуть не сложнее, чем переменное.

Для этого возьмите, к примеру, самую обыкновенную пальчиковую батарейку. Соедините красный провод мультиметра с "+" - вым контактом батарейки, а черный с "-" - вым . Если вы соедините их наоборот - ничего страшного не произойдет, просто на экране мультиметра показания будут отображаться со знаком "минус", примерно вот так.

Обычно напряжение на аккумуляторах маленькое, так что можно не бояться и прижимать щупы пальцами. До 20 вольт вы скорее всего ничего не почувствуете. В случае батарейки типа AAA - её максимальное напряжение 1.5 вольта, что совсем не страшно для человека.

Как мы видим из показаний мультиметра, напряжение в нашей батарейке 1.351 вольта, а значит батарейка еще вполне себе заряженная и может использоваться.

Аналогичным образом можно проверять любые другие элементы питания и измерять их вольтаж, и как вы теперь знаете, ничего сложного в этом нет.

Б. Григорьев (СССР)

Важнейшая характеристика переменного напряжения (тока)-его среднеквадратическое* значение (СКЗ). Знать истинное СКЗ необходимо при определении мощности или энергетических соотношений в цепях переменного тока, измерении шумовых характеристик устройств и коэффициентов гармонических или интермодуляционных искажений, налаживании тиристорных регуляторов мощности. Сочетание «истинное СКЗ» было употреблено здесь не случайно. Дело в том, что измерить СКЗ сложно, поэтому вольтметрами (самостоятельными или включенными в состав мультиметров) обычно измеряют либо среднее выпрямленное, либо пиковое значение переменного напряжения. Для напряжения синусоидальной формы, а оно чаще других встречается в практике измерений, есть однозначная связь между этими тремя значениями СКЗ: пиковое в 1,41 раза больше, чем СКЗ, а среднее выпрямленное в 1,11 раза меньше его. Поэтому вольтметры широкого применения практически всегда откалиброваны в СКЗ независимо от того, что на самом деле регистрирует данный прибор. Следовательно, при измерении СКЗ переменных напряжений, форма которых заметно отличается от синусоидальной, пользоваться этими вольтметрами в общем случае нельзя, однако для периодических сигналов несложной формы (меандр, треугольник и т. п.) можно вычислить поправочные коэффициенты. Но этот способ неприемлем для наиболее важных в практике измерений (в частности, и тех, что упоминались выше). Здесь на помощь может прийти только , регистрирующий истинные СКЗ переменного напряжения.

Длительное время для измерения СКЗ использовались методы, основанные на преобразовании переменного напряжения в постоянное с помощью термоэлектронных приборов. В модернизированной форме эти методы применяются и сейчас. Однако все более широкое распространение получает измерительная аппаратура, представляющая собой специализированные аналоговые вычислительные устройства. По той или иной математической модели они обрабатывают исходный сигнал так, чтобы продуктом обработки было его СКЗ. Этот путь, даже с учетом успехов микроэлектроники, неизбежно ведет к усложнению аппаратуры , что неприемлемо для радиолюбительской практики, поскольку измерительный прибор становится сложней устройств, для налаживания которых он необходим.

Если не выдвигать требование, чтобы СКЗ был прямопоказываю- щим (а это важно, в первую очередь, для массовых измерений), то возможно создание очень простого в изготовлении и налаживании прибора. Метод измерения СКЗ основан в нем на усилении напряжения до уровня, при котором начинает светиться обыкновенная лампочка накаливания. Яркость свечения (ее регистрируют фоторезистором) лампочки однозначно связана с СКЗ приложенного к ней переменного напряжения. Чтобы исключить нелинейность преобразователя переменное напряжение - резистора, целесообразно использовать лишь для регистрации определенной яркости свечения лампочки, устанавливаемой при калибровке прибора. Тогда измерения СКЗ сводятся к регулировке коэффициента передачи предварительного усилителя так, чтобы лампочка светилась с заданной яркостью. Среднее квадратическое значение измеряемого напряжения считывают по шкале переменного резистора.

четании с диодами VD1 и VD2 обеспечивают защиту микроамперметра при значительном разбалансе моста. Этот же микроамперметр с помощью переключателя SA1 можно подключить к выходу усилителя для его балансировки по постоянному току.

Измеряемое напряжение поступает на неинвертирующий вход ОУ DA1. Следует заметить, что если исключить разделительный СI, то на вход прибора можно будет подавать переменное напряжение с постоянной составляющей. И в этом случае показания прибора будут соответствовать истинному СКЗ суммарного (постоянное + переменное) напряжения.

Теперь о некоторых особенностях рассматриваемого вольтметра и о выборе элементов для него. Главным элементом прибора является оптрон VL1. Разумеется, очень удобно использовать готовый стандартный прибор, но аналог оптрона можно изготовить и самостоятельно. Для этого необходимы лампочка накаливания и , которые помещают в корпус, исключающий попадание на внешнего света. Кроме того, желательно с^еспечить минимальную передачу тепла от лампочки к фоторезистору (его и от температуры). Наиболее жесткие требования предъявляются к лампочке накаливания. Яркость ее свечения при СКЗ напряжения на ней около 1,5 В должна быть достаточной, чтобы вывести в рабочую точку, соответствующую балансу моста. Такое ограничение обусловлено тем, что прибор должен иметь хороший пик-фактор (отношение максимально допустимого амплитудного значения измеряемого напряжения к среднему квадратическому). При небольшом пик-факторе прибор может не зарегистрировать отдельные выбросы напряжения и занизить тем самым его СКЗ. При значениях элементов моста, данных на схеме рис. 1, СКЗ напряжения на оптроне , выводящие его в рабочую точку ( около 10 кОм), будет примерно 1,4 В. Максимальная амплитуда выходного напряжения (до начала ограничения) в данном приборе не превышает 11 В, поэтому его пик-фактор будет около 18 дБ. Это значение вполне приемлемо для большинства измерений, но при необходимости его можно несколько увеличить, повысив напряжение питания усилителя.

Еще одно ограничение на лампочку накаливания - ее ток в рабочей точке не должен превышать 10 мА. В противном случае необходим более мощный эмиттер- ный повторитель, так как он должен обеспечивать пиковый ток. примерно в 10 раз больший, чем ток, потребляемый лампочкой накаливания в рабочей точке.

К фоторезистору самодельного оптрона особых требований не предъявляется, но если у радиолюбителя есть возможность выбора, то желательно найти экземпляр, который имеет необходимое в рабочей точке при меньшей освещенности. Это позволит реализовать больший пик-фактор прибора.

Выбор ОУ однозначно определяет комбинацию двух параметров: чувствительность и полосу пропускания. Амплитудно- (АЧХ) операционного усилителя К140УД8 приведена на рис. 2 (она типична для многих ОУ с внутренней коррекцией). Как видно из АЧХ, для того чтобы обеспечить измерения СКЗ напряжения в полосе частот до 20 кГц, максимальный (при верхнем по схеме рис. 1 положении движка переменного резистора R3) коэффициент усиления не должен в данном случае превышать нескольких десятков. Это подтверждает и нормированная АЧХ прибора, которая приведена на рис. 3.

Кривые 1-3 соответствуют трем положениям движка переменного резистора R3: верхнему, среднему и нижнему.

При этих измерениях усилителя (соответствует кривой 1) был около 150, что соответствует пределам измерения СКЗ от 10 до 100 мВ. Видно, что спад АЧХ на частотах выше 10 кГц в данном случае становится уже весьма существенным. Для уменьшения спада АЧХ возможны два способа. Во-первых, можно уменьшить (подбором резисторов R4 и R5) усилителя до 15…20. Это на порядок снизит чувствительность прибора (что можно легко компенсировать предварительными усилителями), но тогда и в худшем случае его АЧХ не будет идти ниже кривой 3 на рис. 3. Во-вторых, можно заменить на другой, более широкополосный (например, на К574УД1, ), что позволит реализовать при полосе пропускания усилителя 20 кГц высокую чувствительность прибора. Так, для К574УД1 усилителя при такой полосе пропускания может быть уже около нескольких сотен.

К остальным элементам прибора особых требований не предъявляется. Отметим лишь, что максимально допустимое рабочее напряжение для транзисторов VT1 и VT2, а также для фоторезистора должно быть не менее 30 В. Впрочем, для фоторезистора оно может быть и меньше, но тогда на мост следует подать пониженное напряжение и подобрать (при необходимости) резисторы R14 и R15.

Перед первым включением вольтметра движок резистора R6 устанавливают в среднее положение, резистора R3 в нижнее, а резистора R5 в крайнее правое по схеме положение. Переключатель SA1 переводят в левое-по схеме положение, а с помощью переменного резистора R6 устанавливают стрелку микроамперметра РА1 на нулевую отметку. Затем движки резисторов R3 и R5 переводят соответственно в верхнее и крайнее левое положение и уточняют балансировку усилителя. Вернув SA1 в исходное положение (контроль баланса моста), приступают к калибровке прибора.

На вход вольтметра подают напряжение синусоидальной формы от звукового генератора. Его среднее квадратическое значение контролируют любым вольтметром переменного тока, имеющим необходимые пределы измерений и частотный диапазон. Отношение максимального измеряемого напряжения к минимальному для данного вольтметра немногим больше 10, поэтому пределы измерений целесообразно выбрать от 0,1 до 1 В (для широкополосного варианта с ОУ КИОУД8) или от 10 до 100 мВ (для варианта с номиналами по рис. 1). Установив входное напряжение чуть меньше нижнего предела измерений, например 9…9,5 мВ, с помощью подстроечного резистора R5 добиваются баланса моста (движок R3 - в верхнем по схеме положении). Затем движок резистора R3 переводят в нижнее положение, а входное напряжение увеличивают до тех пор. пока не восстановится баланс моста. Если это напряжение будет более 100 мВ (для рассматриваемого нами варианта), то можно переходить к калибровке прибора и градуировке его шкалы. В случае, когда напряжение, при котором балансируется мост, меньше 100 мВ или заметно больше этого значения, следует уточнить резистора R2 (соответственно уменьшить или увеличить его). При этом, естественно, процедуру установки пределов измерения повторяют снова. Операция калибровки прибора очевидна: подавая на его вход напряжение в пределах 10… 100 мВ, вращением движка резистора R3 добиваются нулевых показаний микроамперметра и наносят на шкалу соответствующие значения.

Измерения отношения сигнал-шум магнитофонов, усилителей и другой звуковоспроизводящей аппаратуры обычно производят со взвешивающими фильтрами, которые учитывают реальную чувствительность человеческого уха к сигналам различных частот. Вот почему среднеквадратичный целесообразно дополнить таким фильтром, принципиальная которого приведена на рис. 4. Формирование требуемой АЧХ производится тремя RC-цепями - R2C2, R4C3C4 и R6C5. Амплитудно- этого фильтра приведена на

рис. 5 (кривая 2). Здесь же для сравнения показана (кривая 1) соответствующая стандартная АЧХ (стандарт СЭВ 1359-78). В области частот ниже 250 Гц и выше 16 кГц АЧХ фильтра несколько отличается от стандартной (примерно на 1 дБ), но возникающей при этом погрешностью можно пренебречь, поскольку шумовые составляющие с такими частотами в отношении сигнал-шум звуковоспроизводящей аппаратуры невелики. Выигрыш за эти небольшие отклонения от стандартной АЧХ - простота фильтра и возможность с помощью одного переключателя на два направления (SA1) отключить фильтр и получить линейный с коэффициентом передачи 10. У фильтра коэффициент передачи на частоте 1 кГц также равен 10.

Отметим, что R5 не задействован в формировании АЧХ фильтра. Он исключает возможность его самовозбуждения на высоких частотах из-за фазовых сдвигов в цепи обратной связи, обусловленных конденсаторами СЗ и С4. этого резистора некритично. При настройке прибора его увеличивают до тех пор, пока не прекратится самовозбуждение фильтра (контролируют широкополосным осциллографом или высокочастотным милливольтметром).

После подбора резистора R5 переходят к подстройке АЧХ фильтра в области высоких частот. Последовательно снимая АЧХ фильтра при различных положениях ротора подстроечного конденсатора С4, находят такое его положение, при котором на частотах выше 1 кГц отклонения АЧХ от стандартной будут минимальными. В области низких частот (300 Гц и ниже) ход АЧХ при необходимости уточняют подбором конденсатора С5. С2 (состоящий из двух конденсаторов емкостью 0,01 мкФ и 2400 пФ, включенных параллельно) влияет в первую очередь на ход АЧХ на частотах 500…800 Гц. Последний этап в настройке фильтра - подбор резистора R2. Его должно быть таким, чтобы коэффициент передачи фильтра на частоте 1 кГц был равен 10. Затем проверяют сквозную АЧХ фильтра и при необходимости уточняют емкость конденсатора С2. Когда фильтр отключен, подбором резистора R3 устанавливают коэффициент передачи предварительного усилителя равным 10.

Если этот фильтр встраивается в среднеквадратичный , то С1 и R1 (см. рис. 1) можно исключить. Их функции будут выполнять С5 и С6, а также R6 (см. рис. 4). В этом случае сигнал с резистора R6 подают непосредственно на неинвертирующий вход операционного усилителя вольтметра.

Поскольку пик-фактор измеряемого переменного напряжения в общем случае заранее не известен, то, как уже отмечалось, возможна погрешность в измерениях

СКЗ, обусловленная ограничением амплитуды сигнала на выходе усилителя. Чтобы быть уверенным в отсутствии такого ограничения, в прибор целесообразно ввести пиковые индикаторы максимально допустимой амплитуды сигнала: один для сигналов положительной полярности, а другой для сигналов отрицательной полярности. За основу можно взять устройство, которое было описано в .

Список литературы

1. Сухов Н. Среднеквадратичный //Радио.- 1981.- № 1.- С. 53-55 и № 12.-С. 43-45.

2. Владимиров Ф. Индикатор максимального уровня//Радио.- 1983.-№ 5.-

Вряд ли будет преувеличением сказать, что тестер семейства М-83х есть у каждого радиолюбителя. Простой, доступный, дешёвый. Вполне достаточный для электрика.

Но для радиолюбителя он имеет изъян при измерениях переменного напряжения. Во-первых, малую чувствительность, во-вторых, предназначен для измерений напряжений частотой 50 Гц. Часто у начинающего любителя нет других приборов, а хочется измерить, например, напряжение на выходе усилителя мощности и оценить его АЧХ. Можно ли это сделать?

В интернете все повторяют одно и то же – «не выше 400 Гц». Так ли это? Давайте посмотрим.

Для проверки собрана установка из тестера М-832, звукового генератора ГЗ-102 и
лампового вольтметра В3-38.

Судя по имеющимся данным, многочисленные приборы семейства М-83х или D-83x собраны практически по одной схеме, поэтому высока вероятность того, что результаты измерений будут близки. Кроме того, в данном случае меня мало интересовала абсолютная погрешность данного тестера, интересовали только его показания в зависимости от частоты сигнала.

Уровень был выбран около 8 Вольт. Это близко к максимальному выходному напряжению генератора ГЗ-102 и близко к напряжению на выходе УМЗЧ средней мощности.

Лучше было бы сделать ещё серию измерений с мощным УНЧ нагруженным на повышающий трансформатор, но не думаю, что результаты изменятся разительно.
Для удобства оценки АЧХ в дБ выбран уровень 0 дБ на пределе 10 В вольтметра В3-38. При изменении частоты сигнала уровень чуть подстраивался, но изменения не превышали долей дБ, ими можно пренебречь.

Результаты


В приведённой таблице К - коэффициент, на который надо умножить результат измерений тестера на данной частоте с учётом спада АЧХ.


Для получения табличных результатов в дБ на выходе генератора устанавливался уровень напряжения, полученного для каждой частоты, а разность в дБ считывалась и заносилась в таблицу. Некоторые неточности из-за округления в 0,5 дБ показаний лампового вольтметра и округления последней цифры показаний тестера. Считаю, в данном случае систематическую ошибку в 1 дБ вполне допустимой т. к. на слух она неощутима.

Вывод

Итак, что же получилось?

Частотная характеристика тестера верна не до 400 Гц, а до 4…6 кГц, выше начинается спад, который можно учесть при помощи таблицы и, значит, получить относительно достоверные результаты в диапазоне 20…20000 Гц и даже выше.


Для того чтобы утверждать, что поправки годятся для всех тестеров, нужно собрать статистику. К сожалению, мешком тестеров не располагаю.

Не надо забывать, что тестер измеряет переменное напряжение по схеме однополупериодного выпрямителя с его недостатками, такими как возможность измерений только синусоидального напряжения без постоянной составляющей, при малом измеряемом напряжении погрешность будет расти.

Как можно улучшить тестер М-832 для измерений переменных напряжений?

Можно поставить дополнительный переключатель пределов «200-20 В» и ещё один резистор шунта. Но это требует разборки и доработки тестера, надо разбираться в схеме и иметь прибор для калибровки. Считаю, что это нецелесообразно.

Лучше сделать отдельную приставку, усиливающую и выпрямляющую напряжение. Выпрямленное напряжение подавать на тестер, включённый на измерение постоянного напряжения.
Но это тема для другой статьи.

Для измерения переменного напряжения используются аналоговые электромеханические приборы (электромагнитные, электродинамические, редко - индукционные), аналоговые электронные приборы (в том числе выпрямительной системы) и цифровые измерительные приборы. Для измерений могут также использоваться компенсаторы, осциллографы, регистрирующие устройства и виртуальные приборы.

При измерении переменного напряжения следует различать мгновенное, амплитудное, среднее и действующее значения искомого напряжения.

Синусоидальное переменное напряжение может быть представлено в виде следующих соотношений:

где u(t) - мгновенное значение напряжения, В; U m - амплитудное значение напряжения, В; (У - среднее значение напряжения, В Т - период

(Т = 1//) искомого синусоидального напряжения, с; U - действующее значение напряжения, В.

Мгновенное значение переменного тока может быть отображено на электронном осциллографе или с помощью аналогового регистратора (самописца).

Средние, амплитудные и действующие значения переменных напряжений измеряются стрелочными или цифровыми приборами непосредственной оценки или компенсаторами переменных напряжений. Приборы для измерения средних и амплитудных значений используются сравнительно редко. Большая часть приборов градуируется в действующих значениях напряжения. Из этих соображений количественные значения напряжений, приведенные в учебном пособии, даны, как правило, в действующих значениях (см. выражение (23.25)).

При измерениях переменных величин большое значение имеет форма искомых напряжений, которые могут быть синусоидальными, прямоугольными, треугольными и др. В паспортах на приборы всегда указывается, для измерения каких напряжений рассчитан прибор (например, для измерения синусоидальных напряжений или прямоугольных). При этом всегда указывается, какой параметр переменного напряжения измеряется (амплитудное значение, среднее значение или действующее значение измеряемого напряжения). Как уже отмечалось, большей частью используется градуировка приборов в действующих значениях искомых переменных напряжений. В силу этого все далее рассматриваемые переменные напряжения даны в действующих значениях.

Для расширения пределов измерения вольтметров переменных напряжений используются добавочные сопротивления, измерительные трансформаторы и добавочные емкости (с приборами электростатической системы).

Использование добавочных сопротивлений для расширения пределов измерения уже рассмотрено в подразделе 23.2 применительно к вольтметрам постоянного напряжения и поэтому в данном подразделе не рассматривается. Не рассматриваются также измерительные трансформаторы напряжения и тока. Сведения по трансформаторам даны в литературе .

При более детальном рассмотрении использования добавочных емкостей для расширения пределов измерения электростатистики вольтметров может применяться одна дополнительная емкость (рис. 23.3, а) или же могут быть применены две дополнительные емкости (рис. 23.3, б).

Для схемы с одной дополнительной емкостью (рис. 23.3, а ) измеряемое напряжение U распределяется между емкостью вольтметра С у и дополнительной емкостью С обратно пропорционально значениям С у и С

Учитывая, что U c = U- Uy, можно записать

Рис. 23.3. Схема расширения пределов измерения электростатических

вольтметров:

а - схема с одной добавочной емкостью; б - схема с двумя добавочными емкостями; U - измеряемое переменное напряжение (действующее значение); С, С, С 2 - добавочные емкости; C v - емкость используемого электростатического вольтметра V; U c - падение напряжения на дополнительной емкости С; U v - показание электростатического вольтметра

Решая уравнение (23.27) относительно U, получим:

Из выражения (23.28) следует, что чем больше измеряемое напряжение U по сравнению с предельно допускаемым напряжением для данного электростатического механизма, тем меньше должна быть емкость С по сравнению с емкостью С у.

Следует отметить, что формула (23.28) правомерна лишь при идеальной изоляции конденсаторов, образующих емкости С и C v . Если же диэлектрик, изолирующий пластины конденсаторов друг от друга, имеет потери, то возникают дополнительные погрешности. Кроме того, емкость вольтметра С у зависит от измеряемого напряжения U, так как от U зависят показания вольтметра и соответственно взаимное расположение подвижных и неподвижных пластин, образующих электростатический измерительный механизм. Последнее обстоятельство приводит к появлению еще одной дополнительной погрешности.

Лучшие результаты получаются, если вместо одной добавочной емкости использовать две добавочные емкости С (и С 2 , образующие делитель напряжения (см. рис. 23.3, б).

Для схемы с двумя добавочными емкостями правомерно соотношение

где U a - падение напряжения на емкости С у

Учитывая, что можно записать

Решая уравнение (23.30) относительно U, получим:

Из выражения (23.31) можно сделать вывод, что если емкость конденсатора С 2 , к которому подключен вольтметр, значительно превышает емкость самого вольтметра, то распределение напряжения практически не зависит от показания вольтметра. Кроме того, при С 2 » С у изменение сопротивления изоляции конденсаторов С, и С 2 и частоты

Таблица 23.3

Пределы и погрешности измерения переменных напряжений

измеряемого напряжения также мало влияют на показания прибора. То есть при использовании двух добавочных емкостей дополнительные погрешности результатов измерений значительно снижаются.

Пределы измерения переменных напряжений приборами разных типов и наименьшие погрешности этих приборов приведены в табл. 23.3.

В качестве примеров в приложении 5 (табл. П.5.1) приведены технические характеристики универсальных вольтметров, позволяющих измерять, в том числе, и переменные напряжения.

В заключение следует отметить следующее.

Погрешности измерения токов (постоянных и переменных) приборами одного типа и в равных условиях всегда больше погрешностей измерения напряжений (и постоянных, и переменных). Погрешности измерения переменных токов и напряжений приборами одного типа и в равных условиях всегда больше погрешностей измерения постоянных токов и напряжений.

Более подробную информацию по затронутым вопросам можно получить в .

Вольтметр – это измерительный прибор, который предназначен для измерения напряжения постоянного или переменного тока в электрических цепях.

Вольтметр подключается параллельно к выводам источника напряжения с помощью выносных щупов. По способу отображения результатов измерений вольтметры бывают стрелочные и цифровые.

Величина напряжения измеряется в Вольтах , обозначается на приборах буквой В (в русском языке) или латинской буквой V (международное обозначение).

На электрических схемах вольтметр обозначается латинской буквой V, обведенной окружностью, как показано на фотографии.

Напряжение тока бывает постоянное и переменное. Если напряжение источника тока переменное, то перед значением ставится знак "~ ", если постоянного, то знак "".

Например, переменное напряжение бытовой сети 220 Вольт кратко обозначается так: ~220 В или ~220 V . На батарейках и аккумуляторах при их маркировке знак "" часто опускается, просто нанесено число. Напряжение боротой сети автомобиля или аккумулятора обозначается так: 12 В или 12 V , а батарейки для фонарика или фотоаппарата: 1,5 В или 1,5 V . На корпусе в обязательном порядке наносится маркировка возле положительного вывода в виде знака "+ ".

Полярность переменного напряжения изменяется во времени. Например, напряжение в бытовой электропроводке изменяет полярность 50 раз в секунду (частота изменения измеряется в Герцах, один Герц равен одному изменению полярности напряжения в одну секунду).

Полярность постоянного напряжения во времени не меняется. Поэтому для измерения напряжения переменного и постоянного тока требуются разные измерительные приборы.

Существуют универсальные вольтметры, с помощью которых можно измерять как переменное, так и постоянное напряжение без переключения режимов работы, например, вольтметр типа Э533.

Как измерять напряжение в электропроводке бытовой сети

Внимание! При измерении напряжения величиной выше 36 В недопустимо прикосновение человека к оголенным провода, так как можно получить удар током.

Согласно требованиям ГОСТ 13109-97 действующее значение напряжения в электрической сети должно быть 220 В ±10% , то есть может изменяться в пределах от 198 В до 242 В . Если в квартире стали тускло гореть лампочки или часто перегорать, стала не стабильно работать бытовая техника, то для принятия мер, требуется сначала измерять значение напряжения в электропроводке.

Приступая к измерениям, необходимо подготовить прибор: – проверить надежность изоляции проводников с наконечниками и щупов; – установить переключатель пределов измерений в положение измерения переменного напряжения не менее 250 В;

– вставить разъемы проводников в гнезда прибора ориентируясь по надписям возле них;


– включить измерительный прибор (если необходимо).

Как видно на картинке, в тестере выбран предел изменения переменного напряжения 300 В, а в мультиметре 700 В. Во многих моделях тестеров, нужно установить в требуемое положение сразу несколько переключателей. Род тока (~ или –), вид измерений (В, А или Омы) и еще вставить концы щупов в нужные гнезда.

В мультиметре конец щупа черного цвета вставлен в гнездо COM (общее для всех измерений), а красного в V, общий для изменения постоянного и переменного напряжения, тока, сопротивления и частоты. Гнездо, обозначенное ma , используются для измерения малых токов, 10 А при измерении тока достигающего 10 А.

Внимание! Измерение напряжения, когда штекер вставлен в гнездо 10 А выведет прибор из строя. В лучшем случае перегорит вставленный внутри прибора предохранитель, в худшем придется покупать новый мультиметр. Особенно часто допускают ошибки при использовании приборов для измерения сопротивления, и, забыв переключить режим, измеряют напряжение. Встречал не один десяток таких неисправных приборов, с горелыми резисторами внутри.

После проведения всех подготовительных работ можно приступать к измерению. Если Вы включили мультиметр, а на индикаторе не появились цифры, значит, либо в прибор не установлена батарейка или она уже выработала свой ресурс. Обычно в мультиметрах применяется батарейка типа «Крона», напряжением 9 В, срок годности которой один год. По этому, даже если прибор не использовался долгое время, батарейка может быть неработоспособна. При эксплуатации мультиметра в стационарных условиях целесообразно вместо кроны использовать адаптер ~220 В/–9 В.

Вставляете концы щупов в розетку или прикасаетесь ними к проводам электропроводки.


Мультиметр сразу покажет напряжение в сети, а вот в стрелочном тестере показания надо еще уметь прочитать. На первый взгляд, кажется, что сложно, так как много шкал. Но если присмотреться, то становится ясно, по какой шкале считывать показания прибора. На рассматриваемом приборе типа ТЛ-4 (который безотказно мне служит более 40 лет!) есть 5 шкал.

Верхняя шкала используется для снятия показаний, когда переключатель стоит в положениях кратных 1 (0,1, 1, 10, 100, 1000). Шкала, расположенная чуть ниже, кратных 3 (0,3, 3, 30, 300). При измерениях напряжения переменного тока величиной 1 В и 3 В, нанесены еще 2 дополнительные шкалы. Для измерения сопротивления имеется отдельная шкала. Аналогичную градуировку имеют все тестеры, но кратность может быть любая.

Так как предел измерений был выставлен ~300 В, значит, отсчет нужно производить по второй шкале с пределом 3, умножив показания на 100. Цена маленького деления равна 0,1, следовательно, получается 2,3 + стрелка стоит посередине между штрихами, значит, берем значение показаний 2,35×100=235 В.

Получилось, что измеренное значение напряжения составляет 235 В, что в пределах допустимого. Если в процессе измерений наблюдается постоянное изменение значения цифр младшего разряда, а у тестера стрелка постоянно колеблется, значит, имеются плохие контакты в соединениях электропроводки и необходимо провести ее ревизию.

Как измерять напряжение батарейки
аккумулятора или блока питания

Так как напряжение источников постоянного тока обычно не превышает 24 В, то прикосновение к клеммам и оголенным проводам не опасно для человека и особых мер безопасности соблюдать не требуется.

Для того, чтобы оценить годность батарейки, аккумулятора или исправность блока питания требуется измерять напряжение на их выводах. Выводы у круглых батареек находятся по торцам цилиндрического корпуса, положительный вывод обозначен знаком «+».

Измерение напряжения постоянного тока практически мало чем отличается от измерения переменного. Нужно просто переключить прибор в соответствующий режим измерения и соблюдать полярность подключения.

Величина напряжения, которое создает батарейка обычно нанесена на ее корпусе. Но даже если результат измерений показал достаточное напряжение, это еще не говорит о том, что батарейка хорошая, так как измерена ЭДС (электро движущая сила), а не емкость батарейки, от которой зависит продолжительность работы изделия, в которое она будет установлена.

Для более точной оценки емкости батарейки нужно напряжение измерять, подсоединив к ее полюсам нагрузку. В качестве нагрузки для батарейки 1,5 В хорошо подходит лампочка накаливания для фонарика, рассчитанная на напряжение 1,5 В. Для удобства работы нужно припаять к ее цоколю проводники.

Если напряжение под нагрузкой снижается менее, чем на 15%, то батарейка или аккумулятор вполне пригодны для эксплуатации. Если нет измерительного прибора, то можно судить о годности к дальнейшей эксплуатации батарейки по яркости свечения лампочки. Но такая проверка не может гарантировать продолжительность работы батарейки в устройстве. Она лишь свидетельствует, что в настоящее время батарейка еще пригодна к эксплуатации.