Меню
Бесплатно
Главная  /  Образование  /  Сравнение нейронных сетей и нечеткой логики. Математические методы и модели искусственного интеллекта: нечеткая логика, генетические алгоритмы, нейронные сети и др

Сравнение нейронных сетей и нечеткой логики. Математические методы и модели искусственного интеллекта: нечеткая логика, генетические алгоритмы, нейронные сети и др

Нечёткая логика и нейронные сети

Введение

Нечёткая логика (англ. fuzzy logic) - раздел математики, являющийся обобщением классической логики и теории множеств, базирующийся на понятии нечёткого множества, впервые введённого Лотфи Заде в 1965 году как объекта с функцией принадлежности элемента к множеству, принимающей любые значения в интервале , а не только 0 или 1. На основе этого понятия вводятся различные логические операции над нечёткими множествами и формулируется понятие лингвистической переменной, в качестве значений которой выступают нечёткие множества.

Предметом нечёткой логики считается исследование рассуждений в условиях нечёткости, размытости, сходных с рассуждениями в обычном смысле, и их применение в вычислительных системах.

Направления исследований нечёткой логики

В настоящее время существует, по крайней мере, два основных направления научных исследований в области нечёткой логики:

Нечёткая логика в широком смысле (теория приближенных вычислений);

Нечёткая логика в узком смысле (символическая нечёткая логика).

Символическая нечёткая логика

Символическая нечёткая логика основывается на понятии t-нормы . После выбора некоторой t-нормы (а её можно ввести несколькими разными способами) появляется возможность определить основные операции над пропозициональными переменными: конъюнкцию, дизъюнкцию, импликацию, отрицание и другие.

Нетрудно доказать теорему о том, что дистрибутивность, присутствующая в классической логике, выполняется только в случае, когда в качестве t-нормы выбирается t-норма Гёделя.

Кроме того, в силу определенных причин, в качестве импликации чаще всего выбирают операцию, называемую residium (она, вообще говоря, также зависит от выбора t-нормы).

Определение основных операций, перечисленных выше, приводит к формальному определению базисной нечёткой логики, которая имеет много общего с классической булевозначной логикой (точнее, с исчислением высказываний).

Существуют три основных базисных нечётких логики: логика Лукасевича, логика Гёделя и вероятностная логика (англ. product logic). Интересно, что объединение любых двух из трёх перечисленных выше логик приводит к классической булевозначной логике.

Характеристическая функция

Для пространства рассуждения и данной функции принадлежности нечёткое множество определяется как

Функция принадлежности количественно градуирует приналежность элементов фундаментальногомножества пространства рассуждения нечёткому множеству . Значение означает, что элемент не включен в нечёткое множество, описывает полностью включенный элемент. Значения между и характеризуют нечётко включенные элементы.

Нечёткое множество и классическое, четкое (crisp ) множество

Примеры нечетких множеств

1. Пусть Е = {0, 1, 2, . . ., 10}, М = . Нечеткое множество «Несколько» можно определить следующим образом:

«Несколько» = 0,5/3 + 0,8/4 + 1/5 + 1/6 + 0,8/7 + 0,5/8; его характеристики: высота = 1, носитель = {3, 4, 5, 6, 7, 8}, точки перехода - {3, 8}.

2. Пусть Е = {0, 1, 2, 3,…, n ,}. Нечеткое множество «Малый» можно определить:

3. Пусть Е = {1, 2, 3, . . ., 100} и соответствует понятию «Возраст», тогда нечеткое множество «Молодой» может быть определено с помощью

Нечеткое множество «Молодой» на универсальном множестве Е" = {ИВАНОВ, ПЕТРОВ, СИДОРОВ,...} задается с помощью функции при­надлежности μ Молодой (x ) на Е = {1, 2, 3, . . ., 100} (возраст), называемой по отношению к Е" функцией совместимости, при этом:

где х - возраст СИДОРОВА.

4. Пусть Е = {ЗАПОРОЖЕЦ, ЖИГУЛИ, МЕРСЕДЕС,… } – множе­ство марок автомобилей, а Е" = - универсальное множество «Сто­имость», тогда на Е" мы можем определить нечеткие множества типа:

Рис. 1.1. Примеры функций принадлежности

«Для бедных», «Для среднего класса», «Престижные», с функциями при­надлежности вида рис. 1.1.

Имея эти функции и зная стоимости автомобилей из Е в данный момент времени, мы тем самым определим на Е" нечеткие множества с этими же названиями.

Так, например, нечеткое множество «Для бедных», заданное на уни­версальном множестве Е = { ЗАПОРОЖЕЦ, ЖИГУЛИ, МЕРСЕДЕС,...}, выглядит так, как показано на рис. 1.2.

Рис. 1.2. Пример задания нечеткого множества

Аналогично можно определить нечеткое множество «Скоростные», «Средние», «Тихоходные» и т. д.

5. Пусть Е - множество целых чисел:

Е = {-8, -5, -3, 0, 1, 2, 4, 6, 9}.

Тогда нечеткое подмножество чисел, по абсолютной величине близких к нулю, можно определить, например, так:

А = {0/-8 + 0,5/-5 + 0,6/-3 +1/0 + 0,9/1 + 0,8/2 + 0,6/4 + 0,3/6 + 0/9}.

Логические операции

Включение. Пусть А и В - нечеткие множества на универсальном множестве Е. Говорят, что А содержится в В, если

Обозначение: А В.

Иногда используют термин доминирование, т.е. в случае, ко­гда А В, говорят, что В доминирует А.

Равенство. А и В равны, если

Обозначение: А = В.

Дополнение. Пусть М = , А и В – нечеткие множества, заданные на Е. А и В дополняют друг друга, если

Обозначение:

Очевидно, что (дополнение определено для М = , но очевидно, что его можно определить для любого упорядоченногоМ).

Пересечение. А В - наибольшее нечеткое подмножество, содержащееся одновременно в А и В:

Объединение. A В - наименьшее нечеткое подмножество, включающее как А, так и В, с функцией принадлежности:

Разность. с функцией принадлежности:

Дизъюнктивная сумма

А В = (A - B ) ∪ (B - A ) = (A ̅ B ) ∪ (̅A ⋂ B)

с функцией принадлежности:

Примеры. Пусть

Здесь:

1) А ⊂ В, т. е. А содержится в B или B доминирует А С несравнимо ни с A , ни с В, т.е. пары {А, С } и {А, С } - пары недоминируемых нечетких множеств.

2) A B C

3) ̅A = 0,6/x 1 + 0,8/x 2 + 1/x 3 + 0/x 4 ; ̅B = 0,3/x 1 + 0,1/x 2 + 0,9/x 3 +0/x 4 .

4) А В = 0,4/x 1 + 0,2/x 2 + 0/x 3 + 1 /х 4 .

5) A В = 0,7/x 1 + 0,9/x 2 + 0,1/x 3 + 1/x 4 .

6) А - В = А ̅В = 0,3/x 1 + 0,l/x 2 + 0/x 3 + 0/x 4 ;

В - А= ̅А В = 0,6/x 1 + 0,8/x 2 + 0,l/x 3 + 0/x 4 .

7) А В = 0,6/x 1 + 0,8/x 2 + 0,1/x 3 + 0/x 4 .

Наглядное представление логических операций над нечеткими множествами. Для нечетких множеств можно строить визуальное представление. Рассмотрим прямоуголь­ную систему координат, на оси ординат которой откладываются значения μ А (х), на оси абсцисс в произвольном порядке распо­ложены элементы Е (мы уже использовали такое представление в примерах нечетких множеств). Если Е по своей природе упо­рядочено, то этот порядок желательно сохранить в расположении элементов на оси абсцисс. Такое представление делает нагляд­ными простые логические операции над нечеткими множествами (см. рис. 1.3).

Рис. 1.3. Графическая интерпретация логических операций:
α - нечеткое множество А; б - нечеткое множество̅А, в - А ̅А; г -A ̅А

На рис. 1.3α заштрихованная часть соответствует нечеткому множеству А и, если говорить точно, изображает область значений А и всех нечетких множеств, содержащихся в А. На рис. 1.3б , в, г даны ̅А, А ̅A, A U ̅А.

Свойства операций и

Пусть А, В, С - нечеткие множества, тогда выполняются сле­дующие свойства:

В отличие от четких множеств, для нечетких множеств в общем

A ̅A ≠ ∅, A ∪ ̅A ≠ E

(что, в частности, проиллюстрировано выше в примере наглядного представления нечетких множеств).

Замечание . Введенные выше операции над нечеткими мно­жествами основаны на использовании операций maxи min. В те­ории нечетких множеств разрабатываются вопросы построения обобщенных, параметризованных операторов пересечения, объеди­нения и дополнения, позволяющих учесть разнообразные смысло­вые оттенки соответствующих им связок «и», «или», «не».


Треугольные нормы и конормы

Один из подходов к операторам пересечения и объединения за­ключается в их определении в классе треугольных норм и конорм.

Треугольной нормой(t-нормой) называется бинарная операция (двуместная действительная функция)

1. Ограниченность: .

2. Монотонность: .

3. Коммутативность: .

4. Ассоциативность: .

Примеры треугольных норм

min(μ A , μ B )

произведение μ A · μ B

max(0, μ A + μ B - 1 ).

Треугольной конормой (сокращенно -конормой) называется двухместная действительная функция

удовлетворяющая следующим условиям:

1. Ограниченность: .

2. Монотонность: .

3. Коммутативность: .

4. Ассоциативность: .

Треугольная конорма является архимедовой , если она непрерывна
и для любого нечеткого множества выполнено неравенство .

Она называется строгой, если функция строго убывает по обоим аргументам.


Примеры t-конорм

max(μ A , μ B )

μ A + μ B - μ A · μ B

min(1, μ A + μ B ).

Примерами треугольных конорм являются следующие операторы :

Треугольная норма T и треугольная конорма S называются дополнительными бинарными операциями, если

T(a ,b ) + S (1 − a ,1 − b ) = 1

Наибольшей популярностью в теории Заде пользуются три пары дополнительных треугольных норм и конорм.

1) Пересечение и объединение по Заде:

T Z (a ,b ) = min{a ,b }, S Z (a ,b ) = max{a ,b }.

2) Пересечение и объединение по Лукасевичу:

3) Вероятностное пересечение и объединение:

Операторы дополнения

В теории нечетких множеств оператор дополнения не является единственным.

Помимо общеизвестного

существует целый набор операторов дополнения нечеткого множества .

Пусть задано некоторое отображение

.

Это отображение будет называться оператором отрицания в теории нечетких множеств , если выполняются следующие условия:

Если кроме этого выполняются условия:

(3) - строго убывающая функция

(4) - непрерывная функция

то она называется строгим отрицанием .

Функция называется сильным отрицанием или инволюцией , если наряду с условиями (1) и (2) для нее справедливо:

(5) .

Приведем примеры функции отрицания:

Классическое отрицание: .

Квадратичное отрицание: .

Отрицание Сугено: .

Дополнение порогового типа: .

Будем называть любое значение , для которого , равновесной точкой . Для любого непрерывного отрицания существует единственная равновесная точка.

Нечеткие числа

Нечеткие числа - нечеткие переменные, определенные на числовой оси, т.е. нечеткое число определяется как нечеткое множество А на множестве действительных чисел ℝ с функцией принадлежности μ А (х ) ϵ , где х - действительное число, т.е. х ϵ ℝ.

Нечеткое число А нормально, если тах μ А (x ) = 1; выпуклое, если для любых х у z выполняется

μ А (х) μ А (у ) ˄ μ A (z ).

Множество α -уровня нечеткого числа А определяется как

Аα = {x /μ α (x ) ≥ α }.

Подмножество S A ⊂ ℝ называется носителем нечеткого числа А, если

S A = { x/μ A (x) > 0 }.

Нечеткое число А унимодально, если условие μ А (х ) = 1 спра­ведливо только для одной точки действительной оси.

Выпуклое нечеткое число А называется нечетким нулем, если

μ А (0) = sup (μ A (x )).

Нечеткое число А положительно, если ∀x ϵ S A , х > 0 и отрицательно, если ∀х ϵ S A , х < 0.

Нечеткие числа (L-R)-Tипа

Нечеткие числа (L-R)-типа - это разновидность нечетких чисел специального вида, т.е. задаваемых по определенным правилам с целью снижения объема вычислений при операциях над ними.

Функции принадлежности нечетких чисел (L-R)-типa задаются с помощью невозрастающих на множестве неотрицательных дей­ствительных чисел функций действительного переменного L(x ) и R(x ), удовлетворяющих свойствам:

а) L(-x ) = L(x ), R(-x ) = R(x );

б) L(0) = R(0).

Очевидно, что к классу (L-R)-функций относятся функции, графики которых имеют вид, приведенный на рис. 1.7.

Рис. 1.7. Возможный вид (L-R)-функций

Примерами аналитического задания (L-R)-функций могут быть

Пусть L(у )и R(у )- функции (L-R)-типа (конкретные). Уни­модальное нечеткое число А с модой а (т. е. μ А (а ) = 1) с помощью L(у )и R(у ) задается следующим образом:

где а - мода; α > 0, β > 0 - левый и правый коэффициенты нечеткости.

Таким образом, при заданных L(у )и R(у ) нечеткое число (уни­модальное) задается тройкой А = (а , α, β ).

Толерантное нечеткое число задается, соответственно, четвер­кой параметров А = (a 1 , а 2 , α, β ), где а 1 иа 2 - границы толе­рантности, т.е. в промежутке [a 1 , а 2 ] значение функции принад­лежности равно 1.

Примеры графиков функций принадлежности нечетких чисел (L-R)-типа приведены на рис. 1.8.

Рис. 1.8. Примеры графиков функций принадлежности нечетких чисел (L-R)-типа

Отметим, что в конкретных ситуациях функции L(у), R(у), а также параметры а, β нечетких чисел , α, β ) и (a 1 , а 2 , α, β ) должны подбираться таким образом, чтобы результат операции (сложения, вычитания, деления и т.д.) был точно или приблизи­тельно равен нечеткому числу с теми же L(у) и R(у), а параметры α" и β" результата не выходили за рамки ограничений на эти па­раметры для исходных нечетких чисел, особенно если результат в дальнейшем будет участвовать в операциях.

Замечание . Решение задач математического моделирова­ния сложных систем с применением аппарата нечетких множеств требует выполнения большого объема операций над разного рода лингвистическими и другими нечеткими переменными. Для удоб­ства исполнения операций, а также для ввода-вывода и хранения данных, желательно работать с функциями принадлежности стан­дартного вида.

Нечеткие множества, которыми приходится оперировать в боль­шинстве задач, являются, как правило, унимодальными и нор­мальными. Одним из возможных методов аппроксимации унимо­дальных нечетких множеств является аппроксимация с помощью функций (L-R)-типа.

Примеры (L-R)-представлений некоторых лингвистических пе­ременных приведены в табл. 1.2.

Таблица 1.2. Возможное (L-R)-представление некоторых лингвистических переменных

Нечеткие отношения

Нечеткие отношения играют фундаментальную роль в теории нечетких систем. Аппарат теории нечетких отношений используется при построении теории нечетких автоматов, при моделировании структуры сложных систем, при анализе процессов принятия решений.

Основные определения

Теория нечетких отношений находит также приложение в задачах, в которых традиционно применяется теория обычных (четких) отношений. Как правило, аппарат теории четких отношений используется при качественном анализе взаимосвязей между объектами исследуемой системы, когда связи носят дихотомический характер и могут быть проинтерпретированы в терминах "связь присутствует", "связь отсутствует", либо когда методы количественного анализа взаимосвязей по каким-либо причинам неприменимы и взаимосвязи искусственно приводятся к дихотомическому виду. Например, когда величина связи между объектами принимает значения из ранговой шкалы, выбор порога на силу связи позволяет преобразовать связь к требуемому виду. Однако, подобный подход, позволяя проводить качественный анализ систем, приводит к потере информации о силе связей между объектами либо требует проведения вычислений при разных порогах на силу связей. Этого недостатка лишены методы анализа данных, основанные на теории нечетких отношений , которые позволяют проводить качественный анализ систем с учетом различия в силе связей между объектами системы.

Обычное неразмытое -арное отношение определяется как подмножество декартова произведения множеств

Подобно нечеткому множеству, нечеткое отношение можно задать с помощью его функции принадлежности

где в общем случае будем считать, что - это полная дистрибутивная решетка. Таким образом, - это частично упорядоченное множество, в котором любое непустое подмножество имеет наибольшую нижнюю и наименьшую верхнюю грани иоперации пересечения и объединения в удовлетворяют законам дистрибутивности. Все операции над нечеткими отношениями определяются с помощью этих операций из . Например, если в качестве взять ограниченное множество вещественных чисел, то операциями пересечения и объединения в будут, соответственно, операции и , и этиоперации будут определять и операции над нечеткими отношениями .

Если множества и конечны, нечеткое отношение между и можно представить с помощью его матрицы отношения , первой строке и первому столбцу которой ставятся в соответствие элементы множеств и , а на пересечении строки и столбца помещается элемент (см. табл.2.1).

Таблица 2.1.
0,5 0,8
0,7 0,6 0,3
0,7 0,4

В случае, когда множества и совпадают, нечеткое отношение называют нечетким отношением на множестве X.

В случае конечных или счетных универсальных множеств очевидна интерпретация нечеткого отношения в виде взвешенного графа , в котором каждая пара вершин из соединяется ребром с весом .

Пример . Пусть и , тогда нечеткий граф , изображенный на рис рис. 2.1, задает некотороенечеткое отношение .

Рис. 2.1.

Свойства нечетких отношений

Различные типы нечетких отношений определяются с помощью свойств, аналогичных свойствам обычных отношений, причем для нечетких отношений можно указать различные способы обобщения этих свойств.

1. Рефлексивность :

2. Слабая рефлексивность :

3. Сильная рефлексивность :

4. Антирефлексивность :

5. Слабая антирефлексивность :

6. Сильная антирефлексивность :

7. Симметричность :

8. Антисимметричность :

9. Асимметричность :

10. Сильная линейность :

11. Слабая линейность :

12. Транзитивность :

Проекции нечетких отношений

Важную роль в теории нечетких множеств играет понятие проекции нечеткого отношения . Дадим определение проекции бинарного нечеткого отношения .

Пусть - функция принадлежности нечеткого отношения в . Проекции и отношения на и - есть множества в и с функцией принадлежности вида

Условной проекцией нечеткого отношения на , при произвольном фиксированном , называется множество с функцией принадлежности вида .

Аналогично определяется условная проекция на при заданном :

Из данного определения видно, что проекции и не влияют на условные проекции и , соответственно. Дадим далее определение , которое учитывает их взаимосвязь.


Размещено на http :// www . сайт . ru /

МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет Прикладной математики, информатики и механики

Курсовая работа

38.03.05 Бизнес-информатика

по курсу «Нечеткая логика и нейронные сети»

Воронеж 2016

Глава 1. Решение задач прогнозирования цен на акции «Мазут»

Глава 2. Построение системы «Набор программистов» нечёткого логического вывода

Первая часть курсовой работы заключается в построении прогноза цен на акции «Мазут» на 5 дней вперед.

На рисунке 1 представлены данные, которые необходимо использовать для прогноза: LOW и CLOSE.

Дальше нужно запустить модуль «Neural networks. Во вкладке «Quick» выбираем тип задачи: «Time Series» После этого выбираем входные и выходные данные во вкладке «Variables». В курсовой работе будем строить прогноз для одной переменной «LOW», она будет и входной, и выходной переменной.(Рисунок 2).

Затем выбираем модуль «Intelligent Problem Solver», нажимаем «Ok» и в открывшемся окне задаем необходимые для прогнозирования параметры.

Во вкладке «Quick» задаем количество обучаемых сетей («Network tested»), в данном примере обучаться будут 500 сетей. В параметре «Network retained» ставим 10 сетей. Здесь программа выберет 10 наилучших сетей. (рисунок 3).

прогнозирование цена нечеткий логика

Выбираем следующую вкладку «Time series» (рисунок 4). Здесь задаем количество входов для прогнозирования.

Во вкладке «Feedback» выбираем следующее: «Improved networks (real time)» и ставим галочки в двух последних параметрах. Это указано на рисунке 5.

Во вкладке «Types» выбираем тип необходимой нам сети. Мы строим сети, используя многослойные персептроны (рисунок 6). Нужные нам параметры: «Three layer perceptron» и «Four layer perceptron»

После выбора всех параметров, нажимаем кнопку «OK». После идентификации процесса построения сетей появляется окно, во вкладке «Quick» нажимаем кнопку «Descriptive statistic» (рисунок 7).

В открывшемся окне отображаются количественных характеристики выбранных сетей. Необходимо проанализировать полученные результаты.

Нам важно значение ошибки «S.D. Ratio»

Она наиболее пригодна для целей сравнения, так как представляет собой число между 1 и 0 и не зависит от знака.

Проанализировав данные результаты, выбираем сети под номерами:1,2,3,4,5. (Рисунок 8)

На вкладке «Plots» («Графики») строим графики выбранных 5 моделей. Отбираем наиболее удачные графики. Критерием выбора является симметричность. Из выбранных 5 сетей удовлетворяют условию графики 2 сети (рисунок 9) и 3 сети (рисунок 10).

Затем снова выбираем 2 модели и в открывшемся окне в параметре «Length of projection» ставим 5, а в параметре «Case» (здесь выбирается день, с какого начнется прогноз 310) Это означает, что прогноз будет сделан на 5 дней вперед. Нажимаем кнопку «Time series spreadsheet».(рисунок 11)

Открывается окно, где показаны цены на акции с 310 по 314 день, смоделированные нашими сетями. Добавляем новый столбец NewVar, куда копируем цены из нашей исходной таблицы (рисунок 12).

Затем строим графики, чтобы посмотреть на прогноз, смоделированный нейронными сетями (рисунок 14). Видим, что график, построенный одной из нейронных сетей расположен довольно близко к исходному и приблизительно повторяет его изменения.

Система «Набор программистов»

1.Входные данные

· Знания английского языка

· Владение компьютером

Множество определения -

Множество термов - {низкое, среднее, высокое}

· Стаж работы

Множество определения -

Множество термов - {мало, достаточно, много}

Множество определения -

Множество термов - {низкий, средний, высокий, очень высокий}


Подобные документы

    Понятие и свойства лингвистической переменной, ее разновидности. Основы теории приближенных рассуждений. Нечеткие системы логического вывода с одной и несколькими входными переменными. Принципы нечеткого моделирования, вычисление уровней истинности.

    презентация , добавлен 29.10.2013

    Рождение искусственного интеллекта. История развития нейронных сетей, эволюционного программирования, нечеткой логики. Генетические алгоритмы, их применение. Искусственный интеллект, нейронные сети, эволюционное программирование и нечеткая логика сейчас.

    реферат , добавлен 22.01.2015

    Модели оценки кредитоспособности физических лиц в российских банках. Нейронные сети как метод решения задачи классификации. Описание возможностей программы STATISTICA 8 Neural Networks. Общая характеристика основных этапов нейросетевого моделирования.

    дипломная работа , добавлен 21.10.2013

    Технологии решения задач с использованием нейронных сетей в пакетах расширения Neural Networks Toolbox и Simulink. Создание этого вида сети, анализ сценария формирования и степени достоверности результатов вычислений на тестовом массиве входных векторов.

    лабораторная работа , добавлен 20.05.2013

    Основные этапы систем нечеткого вывода. Правила нечетких продукций, используемые в них. Нечеткие лингвистические высказывания. Определение алгоритмов Цукамото, Ларсена, Сугено. Реализации нечеткого вывода Мамдани на примере работы уличного светофора.

    курсовая работа , добавлен 14.07.2012

    Методы, системы, типы и способы проводимых измерений в автоматизированных системах медицинского обеспечения безопасности на транспорте. Проектирования нечеткого алгоритма предрейсовых медицинских осмотров на основе адаптивной сети нейро-нечеткого вывода.

    дипломная работа , добавлен 06.05.2011

    Понятие о нейронных сетях и параллели из биологии. Базовая искусственная модель, свойства и применение сетей. Классификация, структура и принципы работы, сбор данных для сети. Использование пакета ST Neural Networks для распознавания значимых переменных.

    реферат , добавлен 16.02.2015

    Решение задачи аппроксимации поверхности при помощи системы нечёткого вывода. Определение входных и выходных переменных, их термы; алгоритм Сугено. Подбор функций принадлежности, построение базы правил, необходимых для связи входных и выходных переменных.

    курсовая работа , добавлен 31.05.2014

    Характеристика моделей обучения. Общие сведения о нейроне. Искусственные нейронные сети, персептрон. Проблема XOR и пути ее решения. Нейронные сети обратного распространения. Подготовка входных и выходных данных. Нейронные сети Хопфилда и Хэмминга.

    контрольная работа , добавлен 28.01.2011

    Интеллектуальная система как техническая или программная система, решающая задачи, которые считаются творческими и принадлежат конкретной предметной области. Анализ системы нечеткого логического вывода. Знакомство со средой программирования FuzzyTECH.

Пока инженеры, работавшие в области автоматического управления, занимались переходом от традиционных электромеханических и аналоговых технологий управления на цифровые мехатронные системы управления, объединяющие компьютеризированные алгоритмы анализа и принятия решений, на горизонте появились новые компьютерные технологии, способные вызвать еще более значительные изменения. Нейронные сети и нечеткая логика уже нашли широкое применение и в скором времени способны изменить способы построения и программирования систем автоматического управления.

Традиционные компьютеры имеют фоннеймановскую архитектуру, в основе которой лежит последовательная обработка и выполнение явно заданных команд. Искусственные нейронные сети (ИНС) строятся на базе другой архитектуры. Они собираются из очень простых процессорных блоков, объединенных в систему с высоким уровнем параллелизма. Эта система выполняет неявные команды, в основе которых лежит распознавание образов на входах данных от внешних истоков.

Нечеткая логика так же переворачивает традиционные представления с ног на голову. Вместо результатов точных измерений, устанавливающих положение величины на заданной шкале (например «температура 23 о C»), нечеткая информация показывает степень принадлежности к нечетко определенным перекрывающимся множествам («на более холодной стороне теплого»).

Определения

Компьютеры (или, более точно, «машины логического вывода»), использующие эти концепции, способны решать сложные задачи, которые оказываются не по силам традиционным системам управления.

Искусственная нейронная сеть (ИНС), согласно Викпедии, – это «взаимосвязанная совокупность искусственных ‘нейронов’, которая использует математическую или вычислительную модель для обработки информации, опирающейся на связанность вычислителей».

В большинстве случаев ИНС представляет адаптивную систему, которая изменяет свою структуру под влиянием внешней или внутренней информации, проходящей через сеть. Вместо расчета числовых результатов по входным числовым данным ИНС моделируют сложные взаимосвязи между входами и выходами или обнаруживают закономерности в данных.

Элементарные узлы (называемые также «нейроны», «нейроды», «процессорные элементы» или «блоки») соединяются вместе и образуют сеть узлов. Полезный эффект от их применения вытекает из способности реализовывать алгоритмы логического вывода, которые изменяют силы или веса сетевых соединений для получения необходимого потока сигнала.

В этом примере искусственной нейронной сети переменная h, представляющая трехмерный вектор, зависит от входной переменной x. Далее g, двумерная векторная переменная, зависит от h, и, наконец, выходная переменная f зависит от g.

Наиболее интересна возможность обучения, которая на практике означает оптимизацию некоторой величины, часто называемой «ценой», которая показывает правильность результата в контексте решаемой задачи.

Например, цена в классической задаче коммивояжера – это время, необходимое для полного объезда территории торговли с остановками во всех требуемых пунктах и прибытия в исходную точку. Более короткий маршрут дает лучшее решение.

Для решения этой задачи фон-неймановские компьютеры должны установить все возможные маршруты, после чего по очереди проверить каждый маршрут, складывая временные задержки для определения суммарной задержки для данного маршрута.После вычисления сумм для всех возможных маршрутов компьютер просто выбирает самый короткий.

В отличие от этого ИНС рассматривают все маршруты параллельно с целью нахождения конфигураций, которые минимизируют полное время маршрута. Использование этих конфигураций минимизирует итоговый маршрут. Обучение состоит в определении конфигураций, которые на основе предыдущего опыта обеспечивают стратегии оптимизации маршрута.

Нечеткая логика (снова согласно Викпедии) выведена из теории нечетких множеств, имеющей дело с рассуждениями, которые в большей степени являются приближенными, чем точным. Истинность в нечеткой логике показывает принадлежность к нечетко определенным множествам. В нечеткой логике решения могут быть приняты на основе неточно определенных, но, тем менее, очень важных характеристик. Нечеткая логика допускает изменение значений принадлежности к множеству в диапазоне 0 до 1 включительно, а также использование таких неопределенных понятий, как “немного”, “до некоторой степени”и“очень”. Это особым образом позволяет реализовывать частичную принадлежность к множеству.

Основное приложение можно описать поддиапазонами непрерывной переменной. Например, диапазон температур антиблокировочной тормозной системы может иметь несколько отдельных функций принадлежности, определяющих температурные интервалы, необходимые для правильного управления тормозами. Каждая функция отображает принадлежность значения температуры к истинностному значению в диапазоне 0 до 1 . Эти истинностные значения могут использоваться далее для выбора способа управления тормозной системы.

Быстрая нечеткая логика для управления в реальном времени

Несмотря на то, что любой микроконтроллер или компьютер могут реализовать алгоритмы нечеткой логики в программном виде, это может оказаться неэффективным из-за низкого быстродействия и потребности в большом объеме памяти. Джим Сибигтрот, системный инженер по автомобильной продукции отделения микроконтроллеров Transportation and Standard Products Group, входящей в Freescale Semiconductor, говорит, что микроконтроллеры HC12 и HCS12 компании очень эффективно решают эту задачу за счет добавления четырех команд, специально разработанных для реализации основных частей механизма логического вывода нечеткой логики.

«Основная программа для универсального механизма логического вывода, которая обрабатывает невзвешенные правила, занимает приблизительно 57 байтов объектного кода (приблизительно 24 строки ассемблерного кода)», – сообщает он.

Сибигтрот отмечает, что модель HCS12 с частотой 25 МГц может выполнить полную последовательность вывода для двух входных и одного выходного параметра с семью пометками для каждого входа и выхода примерно за 20 мкс. Эквивалентная программа для MC68HC11 с частотой 8 МГц (без команд нечеткой логики) заняла бы приблизительно 250 байтов объектного кода и примерно 750 мкс времени. Даже если бы MC68HC11 мог обработать программу с такой же скоростью, что и HCS12, команды нечеткой логики уменьшают программу в 4 раза и сокращают время выполнения в 12 раз. Такие короткие интервалы распознавания позволяют использовать алгоритмы нечеткой логики в системах управления в режиме реального времени без дорогостоящего компьютерного оборудования или больших программ.

Обработка изображений

С помощью принятия решений в ИНС, основанной на нечеткой логике, можно создать мощную систему управления. Очевидно, что две эти концепции хорошо работают вместе: алгоритм логического вывода с тремя нечеткими состояниями (например, холодный, теплый, горячий) мог бы быть реализован в аппаратном виде при использовании истинностных значений (0.8, 0.2, 0.0) в качестве входных значений для трех нейронов, каждый из которых представляет одно из трех множеств. Каждый нейрон обрабатывает входную величину в соответствии со своей функцией и получает выходное значение, которое далее будет входным значением для второго слоя нейронов, и т.д.

Например, нейрокомпьютер для обработки изображений может снять многочисленные ограничения по видеозаписи,освещению и настройкам аппаратуры. Такая степень свободы становится возможной благодаря тому, что нейронная сеть позволяет построить механизм распознавания с помощью изучения примеров. В результате система может быть обучена распознаванию годных и бракованных изделий при сильном и слабом освещении, при их расположении под разными углами и т.д. Механизм логического вывода начинает работать с“оценки”условий освещения (другими словами, устанавливает степень сходства с другими условиями освещения, при которых система знает, как действовать). После этого система выносит решение о содержании изображения используя критерии, основанные на данных условиях освещения. Поскольку система рассматривает условия освещения как нечеткие понятия, механизм логического вывода легко определяет новые условия по известным примерам.

Чем больше примеров изучает система, тем больший опыт приобретает механизм обработки изображений. Этот процесс обучения может быть достаточно легко автоматизирован, например, за счет предварительной сортировки по группам деталей с близкими свойствами для обучения по областям сходств и различий. Эти наблюдаемые сходства и различия могут далее предоставлять информацию ИНС, задача которой состоит в сортировке поступающих деталей по этим категориям. Таким образом, успех работы системы зависит не от стоимости оборудования, а от количества изображений, необходимых для обучения и построения надежного механизма логического вывода.

Нейрокомпьютер для обработки изображений подходит для приложений,где диагностика опирается на опыт и экспертную оценку оператора, а не на модели и алгоритмы. Процессор может построить механизм распознавания из простых комментариев к изображению, сделанных оператором, затем извлечь характеристики или векторы признаков из объектов, снабженных комментариями, и передать их в нейронную сеть. Векторы признаков, описывающие видимые объекты, могут быть такими простыми как значения строки пикселей, гистограмма или распределение интенсивности, профили распределения интенсивности или градиенты по соответствующим осям. Более сложные признаки могут включать элементы вейвлет-преобразования и быстрого преобразования Фурье.

Обобщения

После обучения на примерах нейронная сеть способна к обобщению и может классифицировать ситуации, никогда ранее не наблюдавшиеся, связывая их со схожими ситуациям из примеров. С другой стороны, если система склонна к излишней свободе и обобщению ситуаций, ее поведение в любое время может быть скорректировано за счет обучения противоположным примерам.

С точки зрения нейронной сети эта операция заключается в уменьшении областей влияния существующих нейронов для согласования с новыми примерами, которые находятся в противоречии с существующим отображением пространства решений.

Важным фактором, определяющим признание ИНС, является самостоятельное и адаптивное обучение. Это означает, что устройство должно обладать способностью изучать объект с минимальным участием оператора или вообще без его вмешательства. В будущем, например, куклы, могли бы узнавать лицо ребенка, разворачивающего их впервые, и спрашивать его имя. Самостоятельное обучение для сотового телефона могло бы заключаться в изучении отпечатка пальца его первого владельца. Идентификация владельца также может быть усилена за счет совмещения в одном устройстве распознавания лица, отпечатка пальца и речи.

В условиях самостоятельного обучения устройство должно строить свой собственный механизм распознавания, который будет лучше всего функционировать в его рабочей среде. Например, интеллектуальная кукла должна распознать своего первоначального владельца независимо от цвета его волос и кожи, местонахождения или времени года.

На первых порах механизм должен использовать все методики выделения признаков, которые он знает. Это приведет к формированию ряда промежуточных механизмов, каждый из которых предназначен для идентификации тех же самых категорий объектов, но основан на наблюдении различных особенностей (цвет, зернистость, контраст, толщина границ и т.д.). После этого общий механизм может дать оценку работе промежуточных механизмов, выбирая те из них, которые дают лучшую производительность и/или точность.

Пример сортировки рыбы

Компания PiscesVMK производит технологическое оборудование для переработки рыбы на борту и на прибрежных заводах. Клиенты фирмы – рыбоперерабатывающие суда, выполняющие круглогодичный лов различных сортов рыбы в Северном море и Атлантическом океане. Эти потребители хотят заполнить свои трюмы как можно быстрее уловом наивысшего качества при минимальной численности работников.

Как правило, рыба доставляется на борт с помощью сетей и выгружается в емкости на конвейере, который переносит их через машины очистки, нарезки и филетирования. Возможные отклонения включают неподходящий сорт, повреждение рыбы, наличие больше одной рыбы в емкости и ее неправильное положение перед поступлением в машину нарезки. Реализация такого контроля традиционными средствами обработки изображений затруднена, поскольку размеры, форму и объем сложно описать математически. Кроме того, эти параметры могут меняться в зависимости от места плавания и сезона.

Pisces установила более 20 систем, базирующихся на интеллектуальной камере Iris от Matrox и механизме распознавания CogniSight от General Vision. Камера монтируется над конвейером так, чтобы рыба проходила под ней как раз перед попаданием в филетирующую машину. Камера связана с контроллером Siemens Simatic S7-224 (ПЛК) и с локальной сетью (LAN). Стробоскопический источник света, установленный рядом с камерой, запускается каждый раз, когда новая емкость появляется в поле зрения. Соединение камеры с локальной сетью необходимо для выполнения трех операций: настройки преобразователя, гарантирующей фокусировку и надлежащий контраст изображения, обучения механизма распознавания и доступа к статистике, непрерывно сообщающей о количестве кондиционной и некондиционной рыбы.

Настройка преобразователя происходит только однажды во время установки камеры в водонепроницаемом корпусе. Обучение выполняется в начале каждого плавания с помощью образцов рыбы из первого улова или с помощью загрузки уже существующего файла.

Как только камера получает базу знаний, она может начать распознавание рыбы автономно, без связи с персональным компьютером. ИНС сортирует ее по категориям «принято», «забраковано», «на переработку» или «пусто». Этот сигнал идет в ПЛК, управляющий двумя щетками, которые направляют соответствующую рыбу в емкости для удаления или переработки. ПЛК также связан с магнитным датчиком, который вырабатывает сигнал запуска каждый раз, когда емкость с рыбой проходит под камерой.

В настоящее время Pisces уже установила более 20 систем на 5 различных рыболовецких флотилиях в Норвегии, Исландии, Шотландии и Дании. Система оценивает 360 конвейерных емкостей в минуту на линиях сельди, но она может работать еще быстрее.

Для сети из 80 нейронов достигнута 98%-ая точность при классификации 16 тонн рыбы. Рыбаки довольны системой благодаря ее надежности, гибкости и легкости в использовании. Преимущества: сокращение срока плавания, повышение качества улова и доходов, распределяемых между меньшим числом рыбаков.

В средствах дискретного производства нейронные сети нашли применение в управлении транспортными средствами, распознавании образов в радарных системах, опознавании личности, распознавании объектов, рукописного текста, жестов и речи.

Нечеткая логика уже используется для управления автомобилем и другими подсистемами транспортного средства, такими как система ABS и круиз-контроль, а также кондиционерами, камерами, цифровой обработкой изображений, искусственным интеллектом компьютерных игр и распознаванием образов в удаленных сенсорных системах.

Подобные технологии «мягких вычислений» также используются для создания надежных зарядных устройство для батарей дыхательного аппарата. В отраслях непрерывного и периодического производства нечеткая логика и нейронные сети являются основой некоторых самонастраивающихся регуляторов. Некоторые микроконтроллеры и микропроцессоры оптимизированы для работы с нечеткой логикой, так что системы могут работать еще быстрей (см. ниже “Быстрая нечеткая логика для управления в реальном времени”).










Пример «Горячий чай" X= 0 C C; С = 0/0; 0/10; 0/20; 0,15/30; 0,30/40; 0,60/50; 0,80/60; 0,90/70; 1/80; 1/90; 1/100.


Пересечение двух нечетких множеств (нечеткое "И"): MF AB (x)=min(MF A (x), MF B (x)). Объединение двух нечетких множеств (нечеткое "ИЛИ"): MF AB (x)=max(MF A (x), MF B (x)).


Согласно Лотфи Заде лингвистической называется переменная, значениями которой являются слова или предложения естественного или искусственного языка. Значениями лингвистической переменной могут быть нечеткие переменные, т.е. лингвистическая переменная находится на более высоком уровне, чем нечеткая переменная.


Каждая лингвистическая переменная состоит из: названия; множества своих значений, которое также называется базовым терм- множеством T. Элементы базового терм-множества представляют собой названия нечетких переменных; универсального множества X; синтаксического правила G, по которому генерируются новые термы с применением слов естественного или формального языка; семантического правила P, которое каждому значению лингвистической переменной ставит в соответствие нечеткое подмножество множества X.










Описание лингвистической переменной "Цена акции" X= Базовое терм-множество: "Низкая", "Умеренная", "Высокая"


Описание лингвистической переменной "Возраст"








«Мягкие вычисления" (Soft computing) нечёткая логика, искусственн ые нейронные сети, вероятностн ые рассуждени я эволюционн ые алгоритмы


























Построение сети (после выбора входных переменных) Выбрать начальную конфигурацию сети Провести ряд экспериментов с различными конфигурациями, запоминая при этом лучшую сеть (в смысле контрольной ошибки). Для каждой конфигурации следует провести несколько экспериментов. Если в очередном эксперименте наблюдается недообучение (сеть не выдаёт результат приемлемого качества), попробовать добавить дополнительные нейроны в промежуточный слой (слои). Если это не помогает, попробовать добавить новый промежуточный слой. Если имеет место переобучение (контрольная ошибка стала расти), попробовать удалить несколько скрытых элементов (а возможно и слоёв).


Задачи Data Mining, решаемые с помощью нейронных сетей Классификация (обучение с учителем) Прогнозирование Кластеризация (обучение без учителя) распознавание текста, распознавание речи, идентификация личности найти наилучшее приближение функции, заданной конечным набором входных значений (обучающих примеров задача сжатия информации путем уменьшения размерности данных


Задача "Выдавать ли кредит клиенту" в аналитическом пакете Deductor (BaseGroup) Обучающий набор - база данных, содержащая информацию о клиентах: – Сумма кредита, – Срок кредита, – Цель кредитования, – Возраст, – Пол, – Образование, – Частная собственность, – Квартира, – Площадь квартиры. Необходимо построить модель, которая сможет дать ответ, входит ли Клиент, желающий получить кредит, в группу риска невозврата кредита, т.е. пользователь должен получить ответ на вопрос "Выдавать ли кредит?" Задача относится к группе задач классификации, т.е. обучения с учителем.







fuzzy logics systems) могут оперировать с неточной качественной информацией и объяснять принятые решения, но не способны автоматически усваивать правила их вывода. Вследствие этого, весьма желательна их кооперация с другими системами обработки информации для преодоления этого недостатка. Подобные системы сейчас активно используются в различных областях, таких как контроль технологических процессов, конструирование, финансовые операции, оценка кредитоспособности, медицинская диагностика и др. Нейронные сети используются здесь для настройки функций принадлежности нечетких систем принятия решений. Такая их способность особенно важна при решении экономических и финансовых задач, поскольку вследствие их динамической природы функции принадлежности неизбежно должны адаптироваться к изменяющимся условиям.

Хотя нечеткая логика может явно использоваться для представления знаний эксперта с помощью правил для лингвистических переменных , обычно требуется очень много времени для конструирования и настройки функций принадлежности, которые количественно определяют эти переменные. Нейросетевые методы обучения автоматизируют этот процесс и существенно сокращают время разработки и затраты на нее, улучшая при этом параметры системы. Системы, использующие нейронные сети для определения параметров нечетких моделей, называются нейронными нечеткими системами. Важнейшим свойством этих систем является их интерпретируемость в терминах нечетких правил if-then.

Подобные системы именуются также кооперативными нейронными нечеткими системами и противопоставляются конкурентным нейронным нечетким системам, в которых нейронные сети и нечеткие системы работают вместе над решением одной и той же задачи, не взаимодействуя друг с другом. При этом нейронная сеть обычно используется для предобработки входов или же для постобработки выходов нечеткой системы.

Кроме них имеются также нечеткие нейронные системы. Так называются нейронные сети, использующие методы нечеткости для ускорения обучения и улучшения своих характеристик. Это может достигаться, например, использованием нечетких правил для изменения темпа обучения или же рассмотрением нейронных сетей с нечеткими значениями входов.

Существует два основных подхода к управлению темпом обучения персептрона методом обратного распространения ошибки . При первом этот темп одновременно и равномерно уменьшается для всех нейронов сети в зависимости от одного глобального критерия - достигнутой среднеквадратичной погрешности на выходном слое. При этом сеть быстро учится на начальном этапе обучения и избегает осцилляций ошибки на позднем. Во втором случае оцениваются изменения отдельных межнейронных связей. Если на двух последующих шагах обучения инкременты связей имеют противоположный знак, то разумно уменьшить соответствующий локальный темп - впротивном случае его следует увеличить. Использование нечетких правил может обеспечить более аккуратное управление локальными темпами модификации связей. В чаcтности это может быть достигнуто, если в качестве входных параметров этих правил использовать последовательные значения градиентов ошибки. Таблица соответствующих правил может иметь, например следующий вид:

Таблица 11.4. Нечеткое правило адаптации темпа обучения нейронной сети
Предыдущий градиент Текущий градиент
NB NS Z PS PB
NB PB PS Z NS NB
NS NS PS Z NS NB
Z NB NS Z NS NB
PS NB NS Z PS NS
PB NB NS Z PS PB

Лингвистические переменные Темп Обучения и Градиент принимают в иллюстрируемом таблицей нечетком правиле адаптации следующие значения: NB - большой отрицательный; NS - малый отрицательный; Z - близок к нулю; PS - малый положительный; PB - большой положительный.

Наконец, в современных гибридных нейронных нечетких системах нейронные сети и нечеткие модели комбинируются в единую гомогенную архитектуру. Такие системы могут интерпретироваться либо как нейронные сети с нечеткими параметрами, либо как параллельные распределенные нечеткие системы.

Элементы нечеткой логики

Центральным понятием нечеткой логики является понятие лингвистической переменной . Согласно Лотфи Заде лингвистической называется переменная, значениями которой являются слова или предложения естественного или искусственного языка. Примером лингвистической переменной является, например, падение производства, если она принимает не числовые, а лингвистические значения, такие как, например, незначительное, заметное, существенное, и катастрофическое. Очевидно, что лингвистические значения нечетко характеризуют имеющуюся ситуацию. Например, падение производства на 3% можно рассматривать и как в какой-то мере незначительное, и как в какой-то мере заметное. Интуитивно ясно, что мера того, что данное падение является катастрофическим должна быть весьма мала.