Меню
Бесплатно
Главная  /  Проблемы  /  Циклическое кодирование. Учебно-методический центр языковой подготовки автф кц

Циклическое кодирование. Учебно-методический центр языковой подготовки автф кц

Простейший циклический код с позволяет обнаруживать одиночные ошибки и ошибки нечетной кратности. Образующий полином этого кода имеет вид Среди неприводимых многочленов, входящих в разложение данный полином является многочленом наименьшей степени Таким образом, при любом числе информационных разрядов необходим только один проверочный разряд. Значение символа этого разряда обеспечивает четность числа единиц в любой разрешенной кодовой комбинации. Полученный циклический код с проверкой на четность способен обнаруживать не только одиночные ошибки в отдельных разрядах, но и ошибки в любом нечетном числе разрядов.

Пример. Построить циклический код для Поскольку образующий полином является полиномом 1-й степени, число проверочных разрядов Следовательно, Для построения циклического кода строим производящую матрицу

Для построения дополнительной матрицы находим остатки от деления поаледней строки единичной транспонированной матрицы, дополненной нулями, на выбранный полином:

Таким образом, дополнительная матрица С, к имеет вид

Теперь строим производящую матрицу

Строки данной матрицы являются тремя первыми комбинациями кода. Остальные из разрешенных комбинаций могут быть получены суммированием по модулю два всевозможных сочетаний строк матрицы Полученные разрушенные кодовые комбинации приведены в табл. 39.

Таблица 39 (см. скан)

Известный интерес представляет рассмотрение следующего простейшего кода с образованного с помощью неприводимого полинома второй степени

Общий вид производящей матрицы циклического кода, образованного полиномом отличается структурой дополнительной матрицы имеющей два столбца.

Легко убедиться, что при делении на данный образующий многочлен одночленов, выражающих строки

единичной матрицы (для нахождения дополнительной матрицы образуется. три вида остатков: 11, 01 и 10. Следовательно, вес каждой комбинации полученного -кода будет не менее двух. Минимальное кодовое расстояние между двумя любыми комбинациями также равно двум. Но такими же величинами характеризуется и простейший код с одной проверкой на четность, образованный двучленом первой степени Однако корректирующая способность обоих кодов неодинакова. Рассматриваемый код имеет большую избыточность и позволяет обнаруживать не только любые ошибки нечетной кратности, но и любые парные смежные ошибки, а также все ошибки, разделенные одним неискаженным элементом .

Широкое распространение на практике получил класс линейных кодов, которые называются цшаическими кодами . Название происходит от основного свойства этих кодов: если некоторая кодовая комбинация принадлежит циклическому коду, то комбинация, полученная циклической перестановкой исходной комбинации (циклическим сдвигом), также принадлежит данному коду:

Вторым свойством всех разрешенных комбинаций циклических кодов является их делимость без остатка на некоторый выбранный полином, называемый производящим.

Эти свойства используются при построении кодов кодирующих и декодирующих устройств, а также при обнаружении и исправлении ошибок.

Циклические коды - это целое семейство помехоустойчивых кодов (одной из разновидностей которых являются коды Хэмминга), обеспечивающее большую гибкость с точки зрения возможности реализации кодов с необходимой способностью обнаружения и исправления ошибок, возникающих при передаче кодовых комбинаций по каналу связи. Циклический код относится к систематическим блочным (л, &)-кодам, в которых к первых разрядов представляют собой комбинацию первичного кода, а последующие (л - к) разрядов являются проверочными.

В основе построения циклических кодов лежит операция деления передаваемой кодовой комбинации на порождающий неприводимый полином степени г. Остаток от деления используется при формировании проверочных разрядов. При этом операции деления предшествует операция умножения, осуществляющая сдвиг влево ^-разрядной информационной кодовой комбинации на г разрядов.

При декодировании принятой л-разрядной кодовой комбинации опять производится деление на порождающий (производящий, образующий) полином.

Синдромом ошибки в этих кодах является наличие остатка от деления принятой кодовой комбинации на порождающий полином. Если синдром равен нулю, то считается, что ошибок нет. В противном случае с помощью полученного синдрома можно определить номер разряда принятой кодовой комбинации, в котором произошла ошибка, и исправить ее.

Однако не исключается возможность возникновения в кодовых комбинациях многократных ошибок, что может привести к ложным исправлениям и (или) необнаружению ошибок при трансформации одной разрешенной комбинации в другую.

Пусть общее число битов в блоке равно я, из них полезную информацию несут в себе т битов, тогда в случае ошибки имеется возможность исправить j битов. Зависимость 5 от п и т для кодов можно определить по табл. 2.6.

Таблица 2.6

Зависимость общего числа разрядов комбинаций от количества информационных и исправляемых разрядов

Увеличивая разность (п - т), можно не только нарастить число исправляемых бит s, но и обнаружить множественные ошибки. Проценты обнаруживаемых множественных ошибок приведены в табл. 2.7.

Таблица 2.7

Проценты обнаруживаемых множественных ошибок

Описание циклических кодов и их построение удобно проводить с помощью многочленов (или полиномов). Запись комбинации в виде полинома используется для того, чтобы отобразить формализованным способом операцию циклического сдвига исходной кодовой комбинации. Так, «-элементную кодовую комбинацию можно описать полиномом (п - 1) степени:

где a„_j = {0, 1}, причем а„_, = 0 соответствуют нулевым элементам комбинации, д„_, = 1 - ненулевым; i - номер разряда кодовой комбинации.

Представим полиномы для конкретных 4-элементных комбинаций:

Операции сложения и вычитания являются эквивалентными и ассоциативными и выполняются по модулю 2:

Примеры выполнения операций:

Операция деления является обычным делением многочленов, только вместо вычитания используется сложение по модулю 2:

Циклический сдвиг кодовой комбинации - перемещение ее элементов справа налево без нарушения порядка их следования, так что крайний левый элемент занимает место крайнего правого.

Основные свойства и название циклических кодов связаны с тем, что все разрешенные комбинации битов в передаваемом сообщении (кодовые слова) могут быть получены путем операции циклического сдвига некоторого исходного кодового слова.

Допустим, задана исходная кодовая комбинация и соответствующий ей полином:

Умножим а(х) на х:

Так как максимальная степень х в кодовой комбинации длиной п не превышает (л - 1), то из правой части полученного выражения для получения исходного полинома необходимо вычесть а„(х" - 1). Вычитание а„(х" - 1) называется взятием остатка по модулю (х п - 1).

Сдвиг исходной комбинации на / тактов можно представить следующим образом: а(х) ? У - а„(х" - 1), т.е. умножением а(х) нах" и взятием остатка по модулю (х" - 1). Взятие остатка необходимо при получении многочлена степени, большей или равной п.

Идея построения циклических кодов базируется на использовании неприводимых многочленов. Неприводимым называется многочлен, который не может быть представлен в виде произведения многочленов низших степеней, т.е. делиться только на самого себя или на единицу и не делиться ни на какой другой многочлен. На такой многочлен делится без остатка двучлен (х" + 1). Неприводимые многочлены в теории циклических кодов играют роль порождающих полиномов.

Возвращаясь к определению циклического кода и учитывая запись операций циклического сдвига кодовых комбинаций, можно записать порождающую матрицу циклического кода в следующем виде:

где Р(х) - исходная кодовая комбинация, на базе которой получены все остальные - 1) базовые комбинации;

С, = 0 или Cj = 1 («О», если результирующая степень полинома Р(х)-х‘ не превосходит (л - 1), или «1» - если превосходит).

Комбинация Р(х) называется порождающей (генераторной) комбинацией. Для построения циклического кода достаточно верно выбрать Р(х). Затем все остальные кодовые комбинации получаются такими же, как и в групповом коде.

Порождающий полином должен удовлетворять следующим требованиям:

  • Р(х) должен быть ненулевым;
  • вес Р(х ) не должен быть меньше минимального кодового расстояния: V(P(x)) > d mm ;
  • Р(х) должен иметь максимальную степень к (к - число избыточных элементов в коде);
  • Р(х) должен быть делителем полинома (х" - 1).

Выполнение последнего условия приводит к тому, что все рабочие кодовые комбинации циклического кода приобретают свойство делимости на Р(х) без остатка. Учитывая это, можно дать другое определение циклического кода: циклический код - это код, все рабочие комбинации которого делятся на порождающий полином без остатка.

Для определения степени порождающего полинома можно воспользоваться выражением г > log 2 (и + 1), где п - размер передаваемого пакета за один раз, т.е. длина строящегося циклического кода.

Примеры порождающих полиномов приведены в табл. 2.8.

Таблица 2.8

Примеры порождающих полиномов

Алгоритм получения разрешенной кодовой комбинации циклического кода из комбинации простого кода следующий.

Пусть заданы полином Р(х) = а г _ { х г + а г _ 2 х г ~ 1 + ... + 1, определяющий корректирующую способность кода, и число проверочных разрядов к, а также исходная комбинация простого от-элементного кода и информационные разряды в виде многочлена А т (х).

Требуется определить разрешенную кодовую комбинацию циклического кода (и, к).

  • 1. Представляем исходную кодовую комбинацию в виде многочлена А т (х). Умножаем многочлен исходной кодовой комбинации на х г: А т (х ) х г. Степень порождающего полинома г равна значению старшего разряда исходной кодовой комбинации.
  • 2. Определяем проверочные разряды, дополняющие исходную информационную комбинацию до разрешенной, как остаток от деления полученного в предыдущем пункте произведения на порождающий

полином:

Остаток деления обозначим как R(x).

3. Окончательно разрешенная кодовая комбинация циклического

кода определится как = А т (х) ? x r + R(x).

Для определения ошибок в принятой кодовой комбинации достаточно разделить ее на порождающий полином. Если принятая комбинация - разрешенная, то остаток от деления будет нулевым. Ненулевой остаток свидетельствует о том, что принятая комбинация содержит ошибки. По виду остатка (синдрома) можно в некоторых случаях также сделать вывод о характере ошибки и ее местоположении и исправить ошибку.

Алгоритм определения ошибки следующий.

Пусть заданы «-элементные комбинации (п = к + т).

  • 1. Выявляем факт наличия ошибки. Получаем остаток от деления принятой комбинации А п -(х) на порождающий полином Р(х): А (х)
  • --- = Rq(x). Наличие остатка R 0 (x) при (Л 0 (х) ф 0) свидетельствует Р(х)

об ошибке.

2. Делим полученный полином #(х) = Л„_, (х) 0 Rq (х) на образующий Р г (х): Ш-1 = R(x), где R(x) - текущий остаток.

3. Сравниваем ЛДх) и R(x). Если они равны, то ошибка произошла в старшем разряде. Если нет, то увеличиваем степень принятого полинома на х и снова делим:

4. Сравниваем полученный остаток с Rq(x). Если они равны, то ошибка произошла во втором разряде. Если они не равны, то умножаем Щх) х 2 и повторяем эти операции до тех пор, пока не получим

R(x) = ад.

Ошибка будет в разряде, соответствующем числу, на которое повышена степень Щх), плюс 1. Например, в случае равенства R(x) и ЛДх)

Соответствующий этому слову, от формальной переменной x . Видно, что это соответствие не просто взаимнооднозначное, но и изоморфное . Так как «слова» состоят из букв из поля, то их можно складывать и умножать (поэлементно), причём результат будет в том же поле. Полином, соответствующий линейной комбинации пары слов и , равен линейной комбинации полиномов этих слов

Это позволяет рассматривать множество слов длины n над конечным полем как линейное пространство полиномов со степенью не выше n-1 над полем

Алгебраическое описание

Если кодовое слово, получающееся циклическим сдвигом на один разряд вправо из слова , то ему соответствующий полином c 1 (x ) получается из предыдущего умножением на x:

Пользуясь тем, что ,

Сдвиг вправо и влево соответственно на j разрядов:

Если m (x ) - произвольный полином над полем G F (q ) и c (x ) - кодовое слово циклического (n ,k ) кода, то m (x )c (x )m o d (x n − 1) тоже кодовое слово этого кода.

Порождающий полином

Определение Порождающим полиномом циклического (n ,k ) кода C называется такой ненулевой полином из C , степень которого наименьшая и коэффициент при старшей степени g r = 1 .

Теорема 1

Если C - циклический (n ,k ) код и g (x ) - его порождающий полином, тогда степень g (x ) равна r = n k и каждое кодовое слово может быть единственным образом представлено в виде

c (x ) = m (x )g (x ) ,

где степень m (x ) меньше или равна k − 1 .

Теорема 2

g (x ) - порождающий полином циклического (n ,k ) кода является делителем двучлена x n − 1

Следствия: таким образом в качестве порождающего полинома можно выбирать любой полином, делитель x n − 1 . Степень выбранного полинома будет определять количество проверочных символов r , число информационных символов k = n r .

Порождающая матрица

Полиномы линейно независимы, иначе m (x )g (x ) = 0 при ненулевом m (x ) , что невозможно.

Значит кодовые слова можно записывать, как и для линейных кодов, следущим образом:

, где G является порождающей матрицей , m (x ) - информационным полиномом.

Матрицу G можно записать в символьной форме:

Проверочная матрица

Для каждого кодового слова циклического кода справедливо . Поэтому проверочную матрицу можно записать как:

Кодирование

Несистематическое

При несистематическом кодирование кодовое слово получается в виде произведения информационного полинома на порождающий

c (x ) = m (x )g (x ) .

Оно может быть реализовано при помощи перемножителей полиномов.

Систематическое

При систематическом кодировании кодовое слово формируется в виде информационного подблока и проверочного

Пусть информационное слово образует старшие степени кодового слова, тогда

c (x ) = x r m (x ) + s (x ),r = n k

Тогда из условия , следует

Это уравнение и задает правило систематичекого кодирования. Оно может быть реализовано при помощи многотактных линейных фильтров(МЛФ)

Примеры

Двоичный (7,4,3) код

В качестве делителя x 7 − 1 выберем порождающий полином третьей степени g (x ) = x 3 + x + 1 , тогда полученный код будет иметь длину n = 7 , число проверочных символов (степень порождающего полинома) r = 3 , число информационных символов k = 4 , минимальное расстояние d = 3 .

Порождающая матрица кода:

,

где первая строка представляет собой запись полинома g (x ) коэффициентами по возрастанию степени. Остальные строки - циклические сдвиги первой строки.

Проверочная матрица:

,

где i-ый столбец, начиная с 0-ого, представляет собой остаток от деления x i на полином g (x ) , записанный по возрастанию степеней, начиная сверху.

Так, например, 3-ий столбец получается , или в векторной записи .

Легко убедиться, что G H T = 0 .

Двоичный (15,7,5) БЧХ код

В качестве порождающего полинома g (x ) можно выбрать произведение двух делителей x 15 − 1 ^

g (x ) = g 1 (x )g 2 (x ) = (x 4 + x + 1)(x 4 + x 3 + x 2 + x + 1) = x 8 + x 7 + x 6 + x 4 + 1 .

Тогда каждое кодовое слово можно получить с помощью произведения информационного полинома m (x ) со степенью k − 1 таким образом:

c (x ) = m (x )g (x ) .

Например, информационному слову соответствует полином m (x ) = x 6 + x 5 + x 4 + 1 , тогда кодовое слово c (x ) = (x 6 + x 5 + x 4 + 1)(x 8 + x 7 + x 6 + x 4 + 1) = x 14 + x 12 + x 9 + x 7 + x 5 + 1 , или в векторном виде

См. также

Ссылки

Wikimedia Foundation . 2010 .

  • Циклические формы в музыке
  • Цикличные граничные условия

Смотреть что такое "Циклические коды" в других словарях:

    укороченные циклические коды - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN shortened cyclic codes …

    Коды Рида-Соломона - недвоичные циклические коды, позволяющие исправлять ошибки в блоках данных. Элементами кодового вектора являются не биты, а группы битов (блоки). Очень распространены коды Рида Соломона, работающие с байтами (октетами). Код Рида Соломона является … Википедия

    коды Голея - Семейство совершенных линейных блоковых кодов с исправлением ошибок. Наиболее полезным является двоичный код Голея. Известен также троичный код Голея. Коды Голея можно рассматривать как циклические коды. … … Справочник технического переводчика

    Коды, исправляющие ошибки

    Коды исправляющие ошибки - Обнаружение ошибок в технике связи действие, направленное на контроль целостности данных при записи/воспроизведении информации или при её передаче по линиям связи. Исправление ошибок (коррекция ошибок) процедура восстановления информации после… … Википедия

    Исправляющие ошибки Коды - Обнаружение ошибок в технике связи действие, направленное на контроль целостности данных при записи/воспроизведении информации или при её передаче по линиям связи. Исправление ошибок (коррекция ошибок) процедура восстановления информации после… … Википедия

Это подкласс линейных кодов, обладающих гем свойством, что циклическая перестановка символов в кодированном блоке дает другой возможный кодированный блок того же кода. Циклические коды основаны на применении идей алгебраической теории полей Галуа1.

Многие важнейшие помехоустойчивые коды систем связи, -

в частности циклические, основаны на структурах конечных Арифметика

полей Галуа. Полем называется множество элементов, которые конечного поля

звания операций взяты в кавычки, потому что они не всегда являются общепринятыми арифметическими операциями. В поле всегда имеется нулевой элемент (0), или нуль, и единичный элемент (1), или единица. Если число q элементов поля ограничено, то поле называется конечным полем , или конечным полем Галуа , и обозначается GF(q) y где q - порядок поля. Наименьшим полем Галуа является двухэлементное иоле GF(2), состоящее всего из двух элементов 1 и 0. Для того чтобы

1 Эварист Галуа (Evariste Galois, 1811 - 1832) - французский математик, заложил основы современной алгебры.

выполнение операций над элементами GF(2) не приводило к выходу за пределы этого поля, они осуществляются по модулю 2 (вообще это определяется порядком поля для простых полей Галуа).

Поле обладает рядом специфических математических свойств. Для элементов поля определены операции сложения и умножения, причем результаты этих операций должны принадлежать этому же множеству.

Для операций сложения и умножения выполняются обычные математические правила ассоциативности - а + + с) = (а + Ь) + с, коммутативности - а + b = b + а и а b = b а и дистрибутивности - а + с) = а b + а с.

Для каждого элемента поля а должны существовать обратный элемент по сложению (-а) и, если а не равно нулю, обратный элемент по умножению (й ’).

Поле должно содержать аддитивную единицу - элемент 0, такой, что а + 0 = а для любого элемента поля а.

Поле должно содержать мультипликативную единицу - элемент 1, такой, что аЛ = а для любого элемента поля а.

Например, существуют поля вещественных чисел, рациональных чисел, комплексных чисел. Эти поля содержат бесконечное число элементов.

Фактически все наборы, образованные циклической перестановкой кодовой комбинации, также являются кодовыми комбинациями. Так, например, циклические перестановки комбинации 1000101 будут также кодовыми комбинациями 0001011, 0010110, 0101100 и т.д. Это свойство позволяет в значительной степени упростить кодирующее и декодирующее устройства, особенно при обнаружении ошибок и исправлении одиночной ошибки. Внимание к циклическим кодам обусловлено тем, что присущие им высокие корректирующие свойства реализуют на основе сравнительно простых алгебраических методов. В то же время для декодирования произвольного линейного блокового кода чаще применяют табличные методы, требующие большой объем памяти декодера.

Циклическим кодом называется линейный блоковый (п, k)- код, который характеризуется свойством цикличности, т.е. сдвиг влево на один шаг любого разрешенного кодового слова дает также разрешенное кодовое слово, принадлежащее этому же коду, и у которого множество кодовых слов представляется совокупностью многочленов степени (п - 1) и менее, делящихся на порождающий многочлен g(x) степени r=n-k y являющийся сомножителем двучлена х п+

В циклическом коде кодовые слова представляют многочленами (полиномами)

где п - длина кода; A i - коэффициенты поля Галуа (значений кодовой комбинации).

Например, для кодовой комбинации 101101 полиномиальная запись имеет вид

Примерами циклических кодов являются коды с четной проверкой, коды с повторениями, коды Хемминга, PC-коды и турбокоды.

Код Хемминга . Возможности исправления ошибок в коде Хемминга связаны с минимальным кодовым расстоянием d 0 . Исправляются все ошибки кратности q = cnt(d 0 - l)/2 (здесь cnt означает «целая часть») и обнаруживаются ошибки кратности d 0 - 1. Так, при контроле на нечетность d Q = 2 и обнаруживаются одиночные ошибки. В коде Хемминга d 0 = 3. Дополнительно к информационным разрядам вводится L = log 2 Q избыточных контролирующих разрядов, где Q - число информационных разрядов. Параметр L округляется до ближайшего большего целого значения. L-разрядный контролирующий код есть инвертированный результат поразрядного сложения (сложения по модулю 2) номеров тех информационных разрядов, значения которых равны единице.

Пример 7.7

Пусть имеем основной код 100110, т.е. Q = 6. Определим дополнительный код.

Решение

Находим, что L = 3 и дополнительный код равен

где П - символ операции поразрядного сложения, и после инвертирования имеем 000. Теперь с основным кодом будет передан и дополнительный. В приемнике вновь рассчитывают дополнительный код и сравнивают с переданным. Фиксируется код сравнения, и если он отличен от нуля, то его значение есть номер ошибочно принятого разряда основного кода. Так, если принят код 100010, го рассчитанный дополнительный код равен инверсии от 010Ш10 = 100, т.е. 011, что означает ошибку в 3-м разряде.

Обобщением кодов Хемминга являются циклические коды БЧХ, которые позволяют корректировать многократные ошибки в принятой кодовой комбинации.

Коды Рида - Соломона базируются на полях Галуа, или конечных нолях. Арифметические действия сложение, вычитание, умножение, деление и г.д. над элементами конечного ноля дают результат, который также является элементом этого ноля. Кодировщик или декодер Рида - Соломона должен обязательно выполнять эти операции. Все операции для реализации кода требуют специального оборудования или специализированного программного обеспечения.

Турбокоды. Избыточные коды могут применяться как самостоятельно, так и в виде некоторого объединения нескольких кодов, когда наборы символов одного избыточного кода рассматриваются как элементарные информационные символы другого избыточного кода. Такое объединение стали называть каскадным кодом. Огромным достоинством каскадных кодов является то, что их применение позволяет упростить кодер и особенно декодер по сравнению с аналогичными устройствами некаскадных кодов той же длины и избыточности. Каскадное кодирование привело к созданию турбокодов. Турбокодом называют параллельную структуру сигнала, состоящую из двух или большего числа систематических кодов. Основной принцип их построения - использование нескольких параллельно работающих компонентных кодеров. В качестве компонентных можно использовать как блочные, так и сверточные коды, коды Хемминга, PC-код, БЧХ и др. Использование перфорации (выкалывания) позволяет увеличить относительную скорость турбокода, адаптировав его исправляющую способность к статистическим характеристикам канала связи. Принцип формирования турбокода состоит в следующем: входной сигнал х, состоящий из К бит, подается параллельно на N перемежителей. Каждый из последних представляет собой устройство, осуществляющее перестановку элементов в блоке из К бит в псевдослучайном порядке. Выходной сигнал с перемежителей - символы с измененным порядком следования - поступает на соответствующие элементарные кодеры. Двоичные последовательности х р i = 1,2,..., JV, на выходе кодера представляют собой проверочные символы, которые вместе с информационными битами составляют единое кодовое слово. Применение перемежителя позволяет предотвратить появление последовательностей коррелированных ошибок при декодировании турбокодов, что немаловажно при использовании традиционного в обработке рекурентного способа декодирования. В зависимости от выбора компонентного кода турбокоды делятся на сверточные турбокоды и блоковые коды-произведения.

Циклические коды названы так потому, что в них часть комбинаций кода либо все комбинации могут быть получены путем циклического сдвига одной или нескольких комбинаций кода. Циклический сдвиг осуществляется справа налево, причем крайний левый символ каждый раз переносится в конец комбинации. Циклические коды, практически, все относятся к систематическим кодам, в них контрольные и информационные разряды расположены на строго определенных местах. Кроме того, коды относятся к числу блочных кодов. Каждый блок (одна буква является частным случаем блока) кодируется самостоятельно.

Идея построения циклических кодов базируется на использовании неприводимых в поле двоичных чисел многочленов. Неприводимыми называются многочлены, которые не могут быть представлены в виде произведения многочленов низших степеней с коэффициентами из того же поля, так же, как простые числа не могут быть представлены произведением других чисел. Иными словами неприводимые многочлены делятся без остатка только на себя или на единицу.

Неприводимые многочлены в теории циклических кодов играет роль образующих многочленов. Если заданную кодовую комбинацию умножить на выбранный неприводимый многочлен, то получим циклический код, корректирующие способности которого определяются неприводимым многочленом.

Предположим, требуется закодировать одну из комбинаций четырехзначного двоичного кода. Предположим также, что эта комбинация G(x) = x 3 + x 2 + 1 ® 1011. Пока не обосновывая свой выбор, берем из таблицы неприводимых многочленов в качестве образующего многочлен P(x) = x 3 + x + 1 ® 1011. Затем умножим G(x) на одночлен той же степени, что и образующий многочлен. От умножения многочлена на одночлен степени n степень каждого члена многочлена повысится на n , что эквивалентно приписыванию n нулей со стороны младших разрядов многочлена. Так как степень выбранного неприводимого многочлена равна трем, то исходная информационная комбинация умножается на одночлен трех степеней

G(x) x n = (x 3 + x 2 + 1 ) x 3 =x 6 + x 5 + x 3 = 1101000.

Это делается для того, чтобы впоследствии в месте этих нулей можно было бы записать корректирующие разряды.

Значение корректирующих разрядов находят по результатам от деления G(x) x n на P(x) :

x 6 +x 5 +0+x 3 +0+0+0 ½x 3 +x+1

x 6 +0+x 4 +x 3

x 5 +x 4 +0+0 x 3 +x 2 +x+1+ x 5 +0+x 3 +x 2

x 4 + x 3 +x 2 +0

x 4 + 0 +x 2 +x

x 3 +0+x+0

x 3 +0+x+1

Таким образом,

или в общем виде

где Q(x) ¾ частное, а R(x) ¾ остаток от деления G(x)×x n на P(x).



Так как в двоичной арифметике 1 Å 1 = 0, а значит, -1 = 1, то можно при сложении двоичных чисел переносить слагаемые из одной части в другую без изменения знака (если это удобно), поэтому равенство вида a Å b = 0 можно записать и как a = b , и как a - b = 0. Все три равенства в данном случае означают, что либо a и b равны 0, либо a и b равны 1, т.е. имеют одинаковую четность.

Таким образом, выражение (5.1) можно записать как

F(x)=Q(x) P(x)= G(x) x n +R(x),

что в случае нашего примера даст

F(x)= (x 3 + x 2 + x + 1) (x 3 + x + 1)= (x 3 + x 2 + 1) x 3 + 1,

F(x)= 1111 1011 = 1101000 + 001 = 1101001.

Многочлен 1101001 и есть искомая комбинация, где 1101‑ информационная часть, а 001 ‑ контрольные символы. Заметим, что искомую комбинацию мы получили бы и как в результате умножения одной из комбинаций полного четырехзначного двоичного кода (в данном случае 1111) на образующий многочлен, так и умножением заданной комбинации на одночлен, имеющий ту же степень, что и выбранный образующий многочлен (в нашем случае таким образом была получена комбинация 1101000) с последующим добавлением к полученному произведению остатка от деления этого произведения на образующий многочлен (в нашем примере остаток имеет вид 001).

И тут решающую роль играют свойства образующего многочлена P(x) . Методика построения циклического кода такова, что образующий многочлен принимает участие в образовании каждой кодовой комбинации, поэтому любой многочлен циклического кода делится на образующий без остатка. Но без остатка делятся только те многочлены, которые принадлежат данному коду, т. е. образующий многочлен позволяет выбрать разрешенные комбинации из всех возможных. Если же при делении циклического кода на образующий многочлен будет получен остаток, то значит либо в коде произошла ошибка, либо это комбинация какого-то другого кода (запрещенная комбинация). По остатку и обнаруживается наличие запрещенной комбинации, т. е. обнаруживается ошибка. Остатки от деления многочленов являются опознавателями ошибок циклических кодов.

С другой стороны, остатки от деления единицы с нулями на образующий многочлен используются для построения циклических кодов.

При делении единицы с нулями на образующий многочлен следует помнить, что длина остатка должна быть не меньше числа контрольных разрядов, поэтому в случае нехватки разрядов в остатке к остатку приписывают справа необходимое число нулей.

01100 11111+

начиная с восьмого, остатки будут повторяться.

Остатки от деления используются для построения образующих матриц, которые, благодаря своей наглядности и удобству получения производных комбинаций, получили широкое распространение для построения циклических кодов. Построение образующей матрицы сводится к составлению единичной транспонированной и дополнительной матрицы, элементы которой представляют собой остатки от деления единицы с нулями на образующий многочлен P(x) . Напомним, что единичная транспонированная матрица представляет собой квадратную матрицу, все элементы которой ‑ нули, кроме элементов расположенных по диагонали справа налево сверху вниз (в нетранспонированной матрице диагональ с единичными элементами расположена слева направо сверху вниз). Элементы дополнительной матрицы приписываются справа от единичной транспонированной матрицы. Использоваться могут лишь те остатки, вес которых W ³ d 0 - 1, где d 0 ‑ минимальное кодовое расстояние. Длина остатков должна быть не менее количества контрольных разрядов, а число остатков должно равняться числу информационных разрядов.

Строки образующей матрицы представляют собой первые комбинации исходного кода. Остальные комбинации кода получаются в результате суммирования по модулю 2 всевозможных сочетаний строк образующей матрицы.

Пример.

Построить полную образующую матрицу циклического кода, обнаруживающего все одиночные и двойные ошибки при передаче 10-разрядных двоичных комбинаций.

Решение.

По таблице 5.12 выбираем ближайшее значение k ³ 10 .

Таблица 5.12 – Соотношения между информационными и проверочными символами для кода длиной до 16 разрядов

n k ρ n k ρ

Согласно таблице таким значением будет k = 11, при этом r = 4, а

n = 15. Также выбираем образующий многочлен x 4 + x 3 +1.

Полную образующую матрицу строим из единичной транспонированной матрицы в канонической форме и дополнительной матрицы, соответствующей проверочным разрядам.

Транспонированная матрица для k = 11 имеет вид:

Дополнительная матрица может быть построена по остаткам деления комбинации в виде единицы с нулями (последней строки единичной транспонированной матрицы) на выбранный образующий многочлен.

Полная образующая матрица будет иметь вид:

Описанный выше метод построения образующих матриц не является единственным. Образующая матрица может быть построена в результате непосредственного умножения элементов единичной матрицы на образующий многочлен. Это часто бывает удобнее, чем нахождение остатков от деления. Полученные коды ничем не отличаются от кодов, построенных по образующим матрицам, в которых дополнительная матрица состоит из остатков от деления единицы с нулями на образующий многочлен.

Образующая матрица может быть построена так же путем циклического сдвига комбинации, полученной в результате умножения строки единичной матрицы ранга k на образующий многочлен.

Ошибки в циклических кодах обнаруживаются при помощи остатков от деления полученной комбинации на образующий многочлен. Остатки от деления являются опознавателями ошибок, но не указывают непосредственно на место ошибки в циклическом коде.

Идея исправления ошибок базируется на том, что ошибочная комбинация после определенного числа циклических сдвигов “подгоняется” под остаток таким образом, что в сумме с остатком она дает исправленную кодовую комбинацию. Остаток при этом представляет собой не что иное, как разницу между искаженными и правильными символами, единицы в остатке стоят как раз на местах искаженных разрядов в подогнанной циклическими сдвигами комбинации. Подгоняют искаженную комбинацию до тех пор, пока число единиц в остатке не будет равно числу ошибок в коде. При этом, естественно, число единиц может быть либо равно числу ошибок s, исправляемых данным кодом (код исправляет 3 ошибки и в искаженной комбинации 3 ошибки), либо меньше s (код исправляет 3 ошибки, а в принятой комбинации 1 ошибка).

Место ошибки в кодовой комбинации не имеет значения. Если k ³ (n / 2) , то после определенного количества сдвигов все ошибки окажутся в зоне “разового” действия образующего многочлена, т. е. достаточно получить один остаток, вес которого W £ s , и этого уже будет достаточно для исправления искаженной комбинации.

Подробно процесс исправления ошибок рассматривается ниже на примерах построения конкретных кодов.