Меню
Бесплатно
Главная  /  Навигаторы  /  Общие свойства сетей с коммутацией каналов. По типу сетевой топологии

Общие свойства сетей с коммутацией каналов. По типу сетевой топологии

Предельные расстояния для радиоканалов приводятся поставщиками в предположении, что в пределах первой зоны Френеля каких-либо физических помех нет. Абсолютное ограничение на дальность связи радиорелейных каналов накладывает кривизна земли, смотри рис. 7.15 . Для частот выше 100 МГц волны распространяются прямолинейно (рис. 7.15.А) и, следовательно, могут фокусироваться. Для высоких частот (ВЧ) и УВЧ земля поглощает волны, но для ВЧ характерно отражение от ионосферы (рис. 7.15Б) - это сильно расширяет зону вещания (иногда осуществляется несколько последовательных отражений), но этот эффект неустойчив и сильно зависит от состояния ионосферы.


Рис. 7.15.

При построении длинных радиорелейных каналов приходится ставить ретрансляторы. Если антенны размещены на башнях высотой 100 м расстояния между ретрансляторами может составлять 80-100 км. Стоимость антенного комплекса обычно пропорциональна кубу диаметра антенны .

Диаграмма излучения направленной антенны показана на рис. 7.16 (стрелкой отмечено основное направление излучения). Эту диаграмму следует учитывать при выборе места установки антенны, особенно при использовании большой мощности излучения. Иначе один из лепестков излучения может прийтись на места постоянного пребывания людей (например, жилье). Учитывая эти обстоятельства, проектирование такого рода каналов целесообразно поручить профессионалам.


Рис. 7.16.

4-го октября 1957 года в СССР был запущен первый искусственный спутник земли, в 1961 году в космос полетел Ю. А. Гагарин, а вскоре на орбиту был выведен первый телекоммуникационный спутник "Молния" - так началась космическая эра коммуникаций. Первый в РФ спутниковый канал для Интернет (Москва-Гамбург) использовал геостационарный спутник "Радуга" (1993). Стандартная антенна INTELSAT имеет диаметр 30 м и угол излучения 0,01 0 . Спутниковые каналы используют частотные диапазоны, перечисленные в таблице 7.6 .

Таблица 7.6. Частотные диапазоны, используемые для спутниковых телекоммуникаций
Диапазон Нисходящий канал ( Downlink )[ГГц] Восходящий канал ( Uplink )[ГГц] Источники помех
С 3,7-4,2 5,925-6,425 Наземные помехи
Ku 11,7-12,2 14,0-14,5 Дождь
Ka 17,7-21,7 27,5-30,5 Дождь

Передача всегда ведется на более высокой частоте, чем прием сигнала со спутника .

Диапазон пока еще "заселен" не слишком плотно, кроме того, для этого диапазона спутники могут отстоять друг от друга на 1 градус. Чувствительность к помехам от дождей может быть обойдена использованием двух наземных приемных станций, разнесенных на достаточно большое расстояние (размер ураганов ограничен). Спутник может иметь много антенн, направленных на разные регионы поверхности земли. Размер пятна "засветки" такой антенны на земле может иметь размер несколько сот километров. Обычный спутник обладает 12-20 транспондерами (приемопередатчиками), каждый из которых имеет полосу 36-50МГц, что позволяет сформировать поток данных 50 Мбит/с. Два транспондера могут использовать разную поляризацию сигнала, работая при одной и той же частоте. Такая пропускная способность достаточна для получения 1600 высококачественных телефонных каналов (32кбит/c). Современные спутники используют узкоапертурную технологию передачи VSAT ( Very Small Aperture Terminals). Диаметр пятна "засветки" на земной поверхности для этих антенн равен примерно 250 км. Наземные терминалы используют антенны диаметром 1 метр и выходную мощность около 1 Вт. При этом канал к спутнику имеет пропускную способность 19,2 Кбит/с, а со спутника - более 512 Кбит/c. Непосредственно такие терминалы не могут работать друг с другом через телекоммуникационный спутник. Для решения этой проблемы используются промежуточные наземные антенны с большим усилением, что существенно увеличивает задержку (и удорожает систему), смотри рис. 7.17 .


Рис. 7.17.

Для создания постоянных каналов телекоммуникаций служат геостационарные спутники, висящие над экватором на высоте около 36000 км.

Теоретически три таких спутника могли бы обеспечить связью практически всю обитаемую поверхность Земли (см. рис. 7.18).


Рис. 7.18.

Реально геостационарная орбита переполнена спутниками различного назначения и национальной принадлежности. Обычно спутники помечаются географической долготой мест, над которыми они висят. При существующем уровне развития технологии неразумно размещать спутники ближе, чем 2 0 . Таким образом, сегодня нельзя разместить более 360/2=180 геостационарных спутников.

Система геостационарных спутников выглядит как ожерелье, нанизанное на невидимую глазу орбиту. Один угловой градус для такой орбиты соответствует ~600 км. Может показаться, что это огромное расстояние . Плотность спутников на орбите неравномерна – на долготе Европы и США их много, а над Тихим океаном – мало, там они просто не нужны. Спутники не вечны, время их жизни обычно не превосходит 10 лет, они выходят из строя главным образом не из-за отказов оборудования, а из-за нехватки горючего для стабилизации их положения на орбите. После выхода из строя спутники остаются на своих местах, превращаясь в космический мусор. Таких спутников уже сейчас немало, со временем их станет еще больше. Конечно, можно предположить, что точность вывода на орбиту со временем станет выше и люди научатся выводить их с точностью в 100 м. Это позволит размещать в одной "нише" 500-1000 спутников (что сегодня представляется почти невероятным, ведь нужно оставить пространство для их маневров). Человечество может таким образом создать нечто похожее на искусственное кольцо Сатурна, состоящее целиком из мертвых телекоммуникационных спутников. До этого дело вряд ли дойдет, так как будет найден способ удаления или восстановления неработающих спутников, хотя с неизбежностью это существенно удорожит услуги таких коммуникационных систем.

К счастью, спутники, использующие разные частотные диапазоны, не конкурируют друг с другом. По этой причине в одной и той же позиции на орбите может находиться несколько спутников с разными рабочими частотами. На практике геостационарный спутник не стоит на месте, а выполняет движение по траектории, имеющей (при наблюдении с Земли) вид цифры 8. Угловой размер этой восьмерки должен укладываться в рабочую апертуру антенны, в противном случае антенна должна иметь сервопривод, обеспечивающий автоматическое слежение за спутником. Из-за энергетических проблем телекоммуникационный спутник не может обеспечить высокого уровня сигнала. По этой причине наземная антенна должна иметь большой диаметр , а приемное оборудование - низкий уровень шума. Это особенно важно для северных областей, в которых угловое положение спутника над горизонтом невысоко (настоящая проблема для широт более 70 0), а сигнал проходит довольно толстый слой атмосферы и заметно ослабляется. Спутниковые каналы могут быть рентабельны для областей, отстоящих друг от друга более чем на 400-500 км (при условии, что других средств не существует). Правильный выбор спутника (его долготы) может заметно снизить стоимость канала.

Число позиций для размещения геостационарных спутников ограничено. В последнее время для телекоммуникаций планируется применение так называемых низколетящих спутников (<1000 км; период обращения ~1 час ). Эти спутники движутся по эллиптическим орбитам, и каждый из них по отдельности не может гарантировать стационарный канал, но в совокупности эта система обеспечивает весь спектр услуг (каждый из спутников работает в режиме "запомнить и передать"). Из-за малой высоты полета наземные станции в этом случае могут иметь небольшие антенны и малую стоимость .

Существует несколько способов работы совокупности наземных терминалов со спутником. При этом может использоваться мультиплексирование по частоте ( FDM ), по времени ( TDM ), CDMA (Code Division Multiple Access ), ALOHA или метод запросов.

Схема запросов предполагает, что наземные станции образуют логическое кольцо , вдоль которого двигается маркер. Наземная станция может начать передачу на спутник, лишь получив этот маркер.

Простая система ALOHA (разработана группой Нормана Абрамсона из Гавайского университета в 70-х годах) позволяет каждой станции начинать передачу тогда, когда она этого захочет. Такая схема с неизбежностью приводит к столкновениям попыток. Связано это отчасти с тем, что передающая сторона узнает о столкновении лишь спустя ~270 мсек. Достаточно последнему биту пакета одной станции совпасть с первым битом другой станции, потеряны будут оба пакета и их придется послать повторно. После столкновения станция ожидает некоторое псевдослучайное время и совершает повторную попытку передачи еще раз. Такой алгоритм доступа обеспечивает эффективность использования канала на уровне 18%, что совершенно недопустимо для таких дорогостоящих каналов, как спутниковые. По этой причине чаще используется доменная версия системы ALOHA , которая удваивает эффективность (предложена в 1972 году Робертсом). Временная шкала делится на дискретные интервалы, соответствующие времени передачи одного кадра.

В этом методе машина не может посылать кадр , когда захочет. Одна наземная станция (эталонная) периодически посылает специальный сигнал, который используется всеми участниками для синхронизации. Если длина временного домена равна , тогда домен с номером начинается в момент времени по отношению к упомянутому выше сигналу. Так как часы разных станций работают по -разному, необходима периодическая ресинхронизация. Другой проблемой является разброс времени распространения сигнала для разных станций. Коэффициент использования канала для данного алгоритма доступа оказывается равным (где – основание натурального логарифма). Не слишком большая цифра, но все же в два раза выше, чем для обычного алгоритма ALOHA .

Метод мультиплексирования по частоте (FDM ) является старейшим и наиболее часто используемым. Типичный транспондер с полосой 36 Мбит/с может быть применен для получения 500 64кбит/с ИКМ-каналов (импульсно-кодовая модуляция ), каждый из которых работает со своей уникальной частотой. Чтобы исключить интерференцию, соседние каналы должны отстоять по частоте на достаточном расстоянии друг от друга. Кроме того, необходимо контролировать уровень передаваемого сигнала, так как при слишком большой выходной мощности могут возникнуть интерференционные помехи в соседнем канале. Если число станций невелико и постоянно, частотные каналы могут быть распределены стационарно. Но при переменном числе терминалов или при заметной флуктуации загрузки приходится переходить на динамическое распределение ресурсов .

Одним из механизмов такого распределения имеет название SPADE , он применялся в первых версиях систем связи на базе INTELSAT . Каждый транспондер системы SPADE содержит 794 симплексных ИКМ-каналов по 64-кбит/c и один сигнальный канал с полосой 128 кбит/c. ИКМ-каналы используются попарно для обеспечения полнодуплексной связи. При этом восходящий и нисходящий каналы имеют полосу по 50 Мбит/с. Сигнальный канал делится на 50 доменов по 1 мсек (128 бит ). Каждый домен принадлежит одной из наземных станций, число которых не превышает 50. Когда станция готова к передаче, она произвольным образом выбирает неиспользуемый канал и записывает номер этого канала в очередной свой 128-битный домен . Если один и тот же канал попытаются занять две или более станции, происходит столкновение, и они вынуждены будут повторить попытку позднее.

Метод мультиплексирования по времени сходен с FDM и довольно широко применяется на практике. Здесь также необходима синхронизация для доменов. Это делается, как и в доменной системе ALOHA , с помощью эталонной станции. Присвоение доменов наземным станциям может выполняться централизовано или децентрализовано . Рассмотрим систему ACTS ( Advanced Communication Technology Satellite ). Система имеет 4 независимых канала ( TDM ) по 110 Мбит/c (два восходящих и два нисходящих). Каждый из каналов структурирован в виде 1-милисекундных кадров, которые имеют по 1728 временных доменов. Все временные домены несут в себе 64-битовое поле данных, что позволяет реализовать голосовой канал с полосой 64 Кбит/c. Управление временными доменами с целью минимизации времени на перемещения вектора излучения спутника предполагает знание географического положения наземных станций. Управление временными доменами осуществляется одной из наземных станций (MCS - Master Control Station ). Работа системы ACTS представляет собой трехшаговый процесс. Каждый из шагов занимает 1 мсек. На первом шаге спутник получает кадр и запоминает его в 1728-ячеечном буфере. На втором - бортовая ЭВМ копирует каждую входную запись в выходной буфер (возможно для другой антенны). И, наконец, выходная запись передается наземной станции.

В исходный момент каждой наземной станции ставится в соответствие один временной домен . Для получения дополнительного домена, например, для организации еще одного телефонного канала, станция посылает запрос MCS . Для этих целей выделяется специальный управляющий канал емкостью 13 запросов в сек. Существуют и динамические методы распределения ресурсов в TDM (методы Кроузера , Биндера [ Binder ] и Робертса ).

Метод CDMA (Code Division Multiple Access ) является полностью децентрализованным. Как и другие методы, он не лишен недостатков. Во-первых, емкость канала CDMA в присутствии шума и отсутствии координации между станциями обычно ниже, чем в случае TDM . Во-вторых, система требует быстродействующего и дорогого оборудования.

Технология беспроводных сетей развивается довольно быстро. Эти сети удобны в первую очередь для подвижных средств. Наиболее перспективным представляется проект IEEE 802.11, который должен играть для радиосетей такую же интегрирующую роль, как 802.3 для сетей Ethernet и 802.5 для Token Ring. В протоколе 802.11 используется тот же алгоритм доступа и подавления столкновений, что и в 802.3, но здесь вместо соединительного кабеля используются радиоволны (Рис. 7.19.). Применяемые здесь модемы могут работать и в инфракрасном диапазоне, что бывает привлекательно, если все машины размещены в общем зале.


Рис. 7.19.

Стандарт 802.11 предполагает работу на частоте 2.4-2.4835 ГГц при использовании модуляции 4FSK/2FSK

Классификация сетей.

По территориальной распространенности

PAN (Personal Area Network) - персональная сеть, предназначенная для взаимодействия различных устройств, принадлежащих одному владельцу.

LAN (Local Area Network) - локальные сети, имеющие замкнутую инфраструктуру до выхода на поставщиков услуг. Термин «LAN» может описывать и маленькую офисную сеть, и сеть уровня большого завода, занимающего несколько сотен гектаров. Зарубежные источники дают даже близкую оценку - около шести миль (10 км) в радиусе. Локальные сети являются сетями закрытого типа, доступ к ним разрешен только ограниченному кругу пользователей, для которых работа в такой сети непосредственно связана с их профессиональной деятельностью.

CAN (Campus Area Network - кампусная сеть) - объединяет локальные сети близко расположенных зданий.

MAN (Metropolitan Area Network) - городские сети между учреждениями в пределах одного или нескольких городов, связывающие много локальных вычислительных сетей.

WAN (Wide Area Network) - глобальная сеть, покрывающая большие географические регионы, включающие в себя как локальные сети, так и прочие телекоммуникационные сети и устройства. Пример WAN - сети с коммутацией пакетов (Frame relay), через которую могут «разговаривать» между собой различные компьютерные сети. Глобальные сети являются открытыми и ориентированы на обслуживание любых пользователей.

Термин «корпоративная сеть» также используется в литературе для обозначения объединения нескольких сетей, каждая из которых может быть построена на различных технических, программных и информационных принципах.

По типу функционального взаимодействия

Клиент-сервер,Смешанная сеть,Одноранговая сеть,Многоранговые сети

По типу сетевой топологии

Шина, Кольцо, Двойное кольцо, Звезда, Ячеистая, Решётка, Дерево, Fat Tree

По типу среды передачи

Проводные (телефонный провод, коаксиальный кабель, витая пара, волоконно-оптический кабель)

Беспроводные (передачей информации по радиоволнам в определенном частотном диапазоне)

По функциональному назначению

Сети хранения данных, Серверные фермы, Сети управления процессом, Сети SOHO, домовые сети

По скорости передач

низкоскоростные (до 10 Мбит/с), среднескоростные (до 100 Мбит/с), высокоскоростные (свыше 100 Мбит/с);

По необходимости поддержания постоянного соединения

Пакетная сеть, например Фидонет и UUCP, Онлайновая сеть, например Интернет и GSM

Сети с коммутацией каналов

Одним из важнейших вопросов в компьютерных сетях является вопрос о коммутации. В понятие коммутация входит:

1. механизм распределения маршрута при передаче данных

2. синхронное использование канала связи

Об одном из способов решения задачи коммутации мы и поговорим, а именно о сетях с коммутацией каналов. Но нужно заметить, что это не единственный способ решения стоящей задачи в компьютерных сетях. Но перейдем ближе к сути вопроса. Сети с коммутацией каналов образуют между конечными узлами общий и неразрывный физический участок (канал) связи, через который проходят данных с одинаковой скоростью. Надо заметить, что одинаковая скорость достигается из-за отсутствия "остановки" на отдельных участках, так как маршрут заранее известен.

Установка связи в сетях с коммутацией каналов всегда начинается первой, ведь нельзя проложить маршрут к нужной цели, не подключившись. А после установки соединения можно смело передавать нужные данные. Давайте взглянем на преимущества сетей с коммутацией каналов:

1. скорость при передаче данных всегда одна и таже

2. нет задержки на узлах при передачи данных, что важно при различных On-line событиях (конференции, общение, видео-трансляции)

Ну а теперь и о недостатках надо сказать пару слов:

1. не всегда можно установить соединение, т.е. иной раз сеть может быть занята

2. мы не может сразу передавать данные без предварительной установки связи, т.е. теряется время

3. не очень эффективное использование физических каналов связи

Про последний минус поясню: при создании физического канала связи мы полностью занимаем все линию, не оставляя возможности другим подключиться к ней.

В свою очередь сети с коммутацией каналов разделяются на 2 типа, использующих разных технологических подход:

1. коммутация каналов на основе частотного мультиплексирования (FDM)

Схема работы такова:

1. на входы коммутатора каждый пользователь передает сигнал

2. все сигналы с с помощью коммутатора заполняют полосы ΔF методом частотной модуляции сигнала

2. коммутация каналов на основе временного мультиплексирования (TDM)

Принцип коммутации каналов на основе временно мультиплексирования достаточно просто. Он основан на временном разделении, т.е. поочередно происходит обслуживание каждого из каналов связи, причем отрезок времени, для отправки сигнала абоненту, строго определен.

3.Коммутация пакетов
Эта техника коммутации была специально разработана для эффективной передачи компьютерного трафика. Первые шаги на пути создания компьютерных сетей на основе техники коммутации каналов показали, что этот вид коммутации не позволяет достичь высокой общей пропускной способности сети. Типичные сетевые приложения генерируют трафик очень неравномерно, с высоким уровнем пульсации скорости передачи данных. Например, при обращении к удаленному файловому серверу пользователь сначала просматривает содержимое каталога этого сервера, что порождает передачу небольшого объема данных. Затем он открывает требуемый файл в текстовом редакторе, и эта операция может создать достаточно интенсивный обмен данными, особенно если файл содержит объемные графические включения. После отображения нескольких страниц файла пользователь некоторое время работает с ними локально, что вообще не требует передачи данных по сети, а затем возвращает модифицированные копии страниц на сервер - и это снова порождает интенсивную передачу данных по сети.

Коэффициент пульсации трафика отдельного пользователя сети, равный отношению средней интенсивности обмена данными к максимально возможной, может достигать 1:50 или даже 1:100. Если для описанной сессии организовать коммутацию канала между компьютером пользователя и сервером, то большую часть времени канал будет простаивать. В то же время коммутационные возможности сети будут закреплены за данной парой абонентов и будут недоступны другим пользователям сети.

При коммутации пакетов все передаваемые пользователем сообщения разбиваются в исходном узле на сравнительно небольшие части, называемые пакетами. Напомним, что сообщением называется логически завершенная порция данных - запрос на передачу файла, ответ на этот запрос, содержащий весь файл и т.д. Сообщения могут иметь произвольную длину, от нескольких байт до многих мегабайт. Напротив, пакеты обычно тоже могут иметь переменную длину, но в узких пределах, например от 46 до 1500 байт. Каждый пакет снабжается заголовком, в котором указывается адресная информация, необходимая для доставки пакета на узел назначения, а также номер пакета, который будет использоваться узлом назначения для сборки сообщения (рис. 3). Пакеты транспортируются по сети как независимые информационные блоки. Коммутаторы сети принимают пакеты от конечных узлов и на основании адресной информации передают их друг другу, а в конечном итоге - узлу назначения.

Коммутаторы пакетной сети отличаются от коммутаторов каналов тем, что они имеют внутреннюю буферную память для временного хранения пакетов, если выходной порт коммутатора в момент принятия пакета занят передачей другого пакета (рис. 3). В этом случае пакет находится некоторое время в очереди пакетов в буферной памяти выходного порта, а когда до него дойдет очередь, он передается следующему коммутатору. Такая схема передачи данных позволяет сглаживать пульсацию трафика на магистральных связях между коммутаторами и тем самым наиболее эффективно использовать их для повышения пропускной способности сети в целом.

Действительно, для пары абонентов наиболее эффективным было бы предоставление им в единоличное пользование скоммутированного канала связи, как это делается в сетях с коммутацией каналов. В таком случае время взаимодействия этой пары абонентов было бы минимальным, так как данные без задержек передавались бы от одного абонента другому. Простои канала во время пауз передачи абонентов не интересуют, для них важно быстрее решить свою задачу. Сеть с коммутацией пакетов замедляет процесс взаимодействия конкретной пары абонентов, так как их пакеты могут ожидать в коммутаторах, пока по магистральным связям передаются другие пакеты, пришедшие в коммутатор ранее.

Тем не менее, общий объем передаваемых сетью компьютерных данных в единицу времени при технике коммутации пакетов будет выше, чем при технике коммутации каналов. Это происходит потому, что пульсации отдельных абонентов в соответствии с законом больших чисел распределяются во времени так, что их пики не совпадают. Поэтому коммутаторы постоянно и достаточно равномерно загружены работой, если число обслуживаемых ими абонентов действительно велико. На рис. 4 показано, что трафик, поступающий от конечных узлов на коммутаторы, распределен во времени очень неравномерно. Однако коммутаторы более высокого уровня иерархии, которые обслуживают соединения между коммутаторами нижнего уровня, загружены более равномерно, и поток пакетов в магистральных каналах, соединяющих коммутаторы верхнего уровня, имеет почти максимальный коэффициент использования. Буферизация сглаживает пульсации, поэтому коэффициент пульсации на магистральных каналах гораздо ниже, чем на каналах абонентского доступа - он может быть равным 1:10 или даже 1:2.

Более высокая эффективность сетей с коммутацией пакетов по сравнению с сетями с коммутацией каналов (при равной пропускной способности каналов связи) была доказана в 60-е годы как экспериментально, так и с помощью имитационного моделирования. Здесь уместна аналогия с мультипрограммными операционными системами. Каждая отдельная программа в такой системе выполняется дольше, чем в однопрограммной системе, когда программе выделяется все процессорное время, пока ее выполнение не завершится. Однако общее число программ, выполняемых за единицу времени, в мультипрограммной системе больше, чем в однопрограммной.
Сеть с коммутацией пакетов замедляет процесс взаимодействия конкретной пары абонентов, но повышает пропускную способность сети в целом.

Задержки в источнике передачи:

· время на передачу заголовков;

· задержки, вызванные интервалами между передачей каждого следующего пакета.

Задержки в каждом коммутаторе:

· время буферизации пакета;

· время коммутации, которое складывается из:

o времени ожидания пакета в очереди (переменная величина);

o времени перемещения пакета в выходной порт.

Достоинства коммутации пакетов

1. Высокая общая пропускная способность сети при передаче пульсирующего трафика.

2. Возможность динамически перераспределять пропускную способность физических каналов связи между абонентами в соответствии с реальными потребностями их трафика.

Недостатки коммутации пакетов

1. Неопределенность скорости передачи данных между абонентами сети, обусловленная тем, что задержки в очередях буферов коммутаторов сети зависят от общей загрузки сети.

2. Переменная величина задержки пакетов данных, которая может быть достаточно продолжительной в моменты мгновенных перегрузок сети.

3. Возможные потери данных из-за переполнения буферов.
В настоящее время активно разрабатываются и внедряются методы, позволяющие преодолеть указанные недостатки, которые особенно остро проявляются для чувствительного к задержкам трафика, требующего при этом постоянной скорости передачи. Такие методы называются методами обеспечения качества обслуживания (Quality of Service, QoS).

Сети с коммутацией пакетов, в которых реализованы методы обеспечения качества обслуживания, позволяют одновременно передавать различные виды трафика, в том числе такие важные как телефонный и компьютерный. Поэтому методы коммутации пакетов сегодня считаются наиболее перспективными для построения конвергентной сети, которая обеспечит комплексные качественные услуги для абонентов любого типа. Тем не менее, нельзя сбрасывать со счетов и методы коммутации каналов. Сегодня они не только с успехом работают в традиционных телефонных сетях, но и широко применяются для образования высокоскоростных постоянных соединений в так называемых первичных (опорных) сетях технологий SDH и DWDM, которые используются для создания магистральных физических каналов между коммутаторами телефонных или компьютерных сетей. В будущем вполне возможно появление новых технологий коммутации, в том или ином виде комбинирующих принципы коммутации пакетов и каналов.

4.VPN (англ. Virtual Private Network - виртуальная частная сеть ) - обобщённое название технологий, позволяющих обеспечить одно или несколько сетевых соединений (логическую сеть) поверх другой сети (например, Интернет). Несмотря на то, что коммуникации осуществляются по сетям с меньшим неизвестным уровнем доверия (например, по публичным сетям), уровень доверия к построенной логической сети не зависит от уровня доверия к базовым сетям благодаря использованию средств криптографии (шифрования, аутентификации, инфраструктуры открытых ключей, средств для защиты от повторов и изменений передаваемых по логической сети сообщений).

В зависимости от применяемых протоколов и назначения, VPN может обеспечивать соединения трёх видов: узел-узел ,узел-сеть и сеть-сеть . Обычно VPN развёртывают на уровнях не выше сетевого, так как применение криптографии на этих уровнях позволяет использовать в неизменном виде транспортные протоколы (такие какTCP, UDP).

Пользователи Microsoft Windows обозначают термином VPN одну из реализаций виртуальной сети - PPTP, причём используемую зачастую не для создания частных сетей.

Чаще всего для создания виртуальной сети используется инкапсуляция протокола PPP в какой-нибудь другой протокол - IP (такой способ использует реализация PPTP - Point-to-Point Tunneling Protocol) или Ethernet (PPPoE) (хотя и они имеют различия). Технология VPN в последнее время используется не только для создания собственно частных сетей, но и некоторымипровайдерами «последней мили» на постсоветском пространстве для предоставления выхода в Интернет.

При должном уровне реализации и использовании специального программного обеспечения сеть VPN может обеспечить высокий уровень шифрования передаваемой информации. При правильной настройке всех компонентов технология VPN обеспечивает анонимность в Сети.

VPN состоит из двух частей: «внутренняя» (подконтрольная) сеть, которых может быть несколько, и «внешняя» сеть, по которой проходит инкапсулированное соединение (обычно используется Интернет). Возможно также подключение к виртуальной сети отдельного компьютера. Подключение удалённого пользователя к VPN производится посредством сервера доступа, который подключён как к внутренней, так и к внешней (общедоступной) сети. При подключении удалённого пользователя (либо при установке соединения с другой защищённой сетью) сервер доступа требует прохождения процесса идентификации, а затем процесса аутентификации. После успешного прохождения обоих процессов, удалённый пользователь (удаленная сеть) наделяется полномочиями для работы в сети, то есть происходит процесс авторизации. Классифицировать VPN решения можно по нескольким основным параметрам:

[править]По степени защищенности используемой среды

Защищённые

Наиболее распространённый вариант виртуальных частных сетей. С его помощью возможно создать надежную и защищенную сеть на основе ненадёжной сети, как правило, Интернета. Примером защищённых VPN являются: IPSec, OpenVPN и PPTP.

Доверительные

Используются в случаях, когда передающую среду можно считать надёжной и необходимо решить лишь задачу создания виртуальной подсети в рамках большей сети. Проблемы безопасности становятся неактуальными. Примерами подобных VPN решений являются: Multi-protocol label switching (MPLS) и L2TP (Layer 2 Tunnelling Protocol) (точнее сказать, что эти протоколы перекладывают задачу обеспечения безопасности на другие, например L2TP, как правило, используется в паре с IPSec).

[править]По способу реализации

В виде специального программно-аппаратного обеспечения

Реализация VPN сети осуществляется при помощи специального комплекса программно-аппаратных средств. Такая реализация обеспечивает высокую производительность и, как правило, высокую степень защищённости.

В виде программного решения

Используют персональный компьютер со специальным программным обеспечением, обеспечивающим функциональность VPN.

Интегрированное решение

Функциональность VPN обеспечивает комплекс, решающий также задачи фильтрации сетевого трафика, организации сетевого экрана и обеспечения качества обслуживания.

[править]По назначению

Используют для объединения в единую защищённую сеть нескольких распределённых филиалов одной организации, обменивающихся данными по открытым каналам связи.

Remote Access VPN

Используют для создания защищённого канала между сегментом корпоративной сети (центральным офисом или филиалом) и одиночным пользователем, который, работая дома, подключается к корпоративным ресурсам с домашнего компьютера, корпоративного ноутбука, смартфона или интернет-киоскa.

Используют для сетей, к которым подключаются «внешние» пользователи (например, заказчики или клиенты). Уровень доверия к ним намного ниже, чем к сотрудникам компании, поэтому требуется обеспечение специальных «рубежей» защиты, предотвращающих или ограничивающих доступ последних к особо ценной, конфиденциальной информации.

Используется для предоставления доступа к интернету провайдерами, обычно в случае если по одному физическому каналу подключаются несколько пользователей.

Client/Server VPN

Он обеспечивает защиту передаваемых данных между двумя узлами (не сетями) корпоративной сети. Особенность данного варианта в том, что VPN строится между узлами, находящимися, как правило, в одном сегменте сети, например, между рабочей станцией и сервером. Такая необходимость очень часто возникает в тех случаях, когда в одной физической сети необходимо создать несколько логических сетей. Например, когда надо разделить трафик между финансовым департаментом и отделом кадров, обращающихся к серверам, находящимся в одном физическом сегменте. Этот вариант похож на технологию VLAN, но вместо разделения трафика, используется его шифрование.

[править]По типу протокола

Существуют реализации виртуальных частных сетей под TCP/IP, IPX и AppleTalk. Но на сегодняшний день наблюдается тенденция к всеобщему переходу на протокол TCP/IP, и абсолютное большинство VPN решений поддерживает именно его. Адресация в нём чаще всего выбирается в соответствии со стандартом RFC5735, из диапазона Приватных сетей TCP/IP

[править]По уровню сетевого протокола

По уровню сетевого протокола на основе сопоставления с уровнями эталонной сетевой модели ISO/OSI.

5. Эталонная модель OSI, иногда называемая стеком OSI представляет собой 7-уровневую сетевую иерархию (рис. 1) разработанную Международной организацией по стандартам (International Standardization Organization - ISO). Эта модель содержит в себе по сути 2 различных модели:

· горизонтальную модель на базе протоколов, обеспечивающую механизм взаимодействия программ и процессов на различных машинах

· вертикальную модель на основе услуг, обеспечиваемых соседними уровнями друг другу на одной машине

В горизонтальной модели двум программам требуется общий протокол для обмена данными. В вертикальной - соседние уровни обмениваются данными с использованием интерфейсов API.


Похожая информация.


Сети с коммутацией каналов обладают несколькими важными общими свойствами независимо от того, какой тип мультиплексирования в них используется.

Сети с динамической коммутацией требуют предварительной процедуры установления соединения между абонентами. Для этого в сеть передается адрес вызываемого абонента, который проходит через коммутаторы и настраивает их на последующую передачу данных. Запрос на установление соединения маршрутизируется от одного коммутатора к другому и в конце концов достигает вызываемого абонента. Сеть может отказать в установлении соединения, если емкость требуемого выходного канала уже исчерпана. Для FDM-коммутатора емкость выходного канала равна количеству частотных полос этого канала, а для TDM-коммутатора - количеству тайм-слотов, на которые делится цикл работы канала. Сеть отказывает в соединении также в том случае, если запрашиваемый абонент уже установил соединение с кем-нибудь другим. В первом случае говорят, что занят коммутатор, а во втором - абонент. Возможность отказа в соединении является недостатком метода коммутации каналов.

Если соединение может быть установлено, то ему выделяется фиксированная полоса частот в FDM-сетях или же фиксированная пропускная способность в TDM-сетях. Эти величины остаются неизменными в течение всего периода соединения. Гарантированная пропускная способность сети после установления соединения является важным свойством, необходимым для таких приложений, как передача голоса, изображения или управления объектами в реальном масштабе времени. Однако динамически изменять пропускную способность канала по требованию абонента сети с коммутацией каналов не могут, что делает их неэффективными в условиях пульсирующего трафика.

Недостатком сетей с коммутацией каналов является невозможность применения пользовательской аппаратуры, работающей с разной скоростью. Отдельные части составного канала работают с одинаковой скоростью, так как сети с коммутацией каналов не буферизуют данные пользователей.

Сети с коммутацией каналов хорошо приспособлены для коммутации потоков данных постоянной скорости, когда единицей коммутации является не отдельный байт или пакет данных, а долговременный синхронный поток данных между двумя абонентами. Для таких потоков сети с коммутацией каналов добавляют минимум служебной информации для маршрутизации данных через сеть, используя временную позицию каждого бита потока в качестве его адреса назначения в коммутаторах сети.

Обеспечение дуплексного режима работы на основе технологий FDM, TDM и WDM

В зависимости от направления возможной передачи данных способы передачи данных по линии связи делятся на следующие типы:

o симплексный - передача осуществляется по линии связи только в одном направлении;

o полудуплексный - передача ведется в обоих направлениях, но попеременно во времени. Примером такой передачи служит технология Ethernet;

o дуплексный - передача ведется одновременно в двух направлениях.

Дуплексный режим - наиболее универсальный и производительный способ работы канала. Самым простым вариантом организации дуплексного режима является использование двух независимых физических каналов (двух пар проводников или двух световодов) в кабеле, каждый из которых работает в симплексном режиме, то есть передает данные в одном направлении. Именно такая идея лежит в основе реализации дуплексного режима работы во многих сетевых технологиях, например Fast Ethernet или АТМ.

Иногда такое простое решение оказывается недоступным или неэффективным. Чаще всего это происходит в тех случаях, когда для дуплексного обмена данными имеется всего один физический канал, а организация второго связана с большими затратами. Например, при обмене данными с помощью модемов через телефонную сеть у пользователя имеется только один физический канал связи с АТС - двухпроводная линия, и приобретать второй вряд ли целесообразно. В таких случаях дуплексный режим работы организуется на основе разделения канала на два логических подканала с помощью техники FDM или TDM.

Модемы для организации дуплексного режима работы на двухпроводной линии применяют технику FDM. Модемы, использующие частотную модуляцию, работают на четырех частотах: две частоты - для кодирования единиц и нулей в одном направлении, а остальные две частоты - для передачи данных в обратном направлении.

При цифровом кодировании дуплексный режим на двухпроводной линии организуется с помощью техники TDM. Часть тайм-слотов используется для передачи данных в одном направлении, а часть - для передачи в другом направлении. Обычно тайм-слоты противоположных направлений чередуются, из-за чего такой способ иногда называют «пинг-понговой» передачей. TDM-разделение линии характерно, например, для цифровых сетей с интеграцией услуг (ISDN) на абонентских двухпроводных окончаниях.

В волоконно-оптических кабелях при использовании одного оптического волокна для организации дуплексного режима работы применяется передача данных в одном направлении с помощью светового пучка одной длины волны, а в обратном - другой длины волны. Такая техника относится к методу FDM, однако для оптических кабелей она получила название разделения по длине волны (Wave Division Multiplexing, WDM). WDM применяется и для повышения скорости передачи данных в одном направлении, обычно используя от 2 до 16 каналов.

Коммутация пакетов

Принципы коммутации пакетов

Коммутация пакетов - это техника коммутации абонентов, которая была специально разработана для эффективной передачи компьютерного трафика. Эксперименты по созданию первых компьютерных сетей на основе техники коммутации каналов показали, что этот вид коммутации не позволяет достичь высокой общей пропускной способности сети. Суть проблемы заключается в пульсирующем характере трафика, который генерируют типичные сетевые приложения. Например, при обращении к удаленному файловому серверу пользователь сначала просматривает содержимое каталога этого сервера, что порождает передачу небольшого объема данных. Затем он открывает требуемый файл в текстовом редакторе, и эта операция может создать достаточно интенсивный обмен данными, особенно если файл содержит объемные графические включения. После отображения нескольких страниц файла пользователь некоторое время работает с ними локально, что вообще не требует передачи данных по сети, а затем возвращает модифицированные копии страниц на сервер - и это снова порождает интенсивную передачу данных по сети.

Коэффициент пульсации трафика отдельного пользователя сети, равный отношению средней интенсивности обмена данными к максимально возможной, может составлять 1:50 или 1:100. Если для описанной сессии организовать коммутацию канала между компьютером пользователя и сервером, то большую часть времени канал будет простаивать. В то же время коммутационные возможности сети будут использоваться - часть тайм-слотов или частотных полос коммутаторов будет занята и недоступна другим пользователям сети.

При коммутации пакетов все передаваемые пользователем сети сообщения разбиваются в исходном узле на сравнительно небольшие части, называемые пакетами. Напомним, что сообщением называется логически завершенная порция данных - запрос на передачу файла, ответ на этот запрос, содержащий весь файл, и т. п. Сообщения могут иметь произвольную длину, от нескольких байт до многих мегабайт. Напротив, пакеты обычно тоже могут иметь переменную длину, но в узких пределах, например от 46 до 1500 байт. Каждый пакет снабжается заголовком, в котором указывается адресная информация, необходимая для доставки пакета узлу назначения, а также номер пакета, который будет использоваться узлом назначения для сборки сообщения (рис. 2.29). Пакеты транспортируются в сети как независимые информационные блоки. Коммутаторы сети принимают пакеты от конечных узлов и на основании адресной информации передают их друг другу, а в конечном итоге - узлу назначения.

Рис. 2.29. Разбиение сообщения на пакеты

Коммутаторы пакетной сети отличаются от коммутаторов каналов тем, что они имеют внутреннюю буферную память для временного хранения пакетов, если выходной порт коммутатора в момент принятия пакета занят передачей другого пакета (рис. 2.30). В этом случае пакет находится некоторое время в очереди пакетов в буферной памяти выходного порта, а когда до него дойдет очередь, то он передается следующему коммутатору. Такая схема передачи данных позволяет сглаживать пульсации трафика на магистральных связях между коммутаторами и тем самым использовать их наиболее эффективным образом для повышения пропускной способности сети в целом.

Рис. 2.30. Сглаживание пульсаций трафика в сети с коммутацией пакетов

Действительно, для пары абонентов наиболее эффективным было бы предоставление им в единоличное пользование скоммутированного канала связи, как это делается в сетях с коммутацией каналов. При этом способе время взаимодействия этой пары абонентов было бы минимальным, так как данные без задержек передавались бы от одного абонента другому. Простои канала во время пауз передачи абонентов не интересуют, для них важно быстрее решить свою собственную задачу. Сеть с коммутацией пакетов замедляет процесс взаимодействия конкретной пары абонентов, так как их пакеты могут ожидать в коммутаторах, пока по магистральным связям передаются другие пакеты, пришедшие в коммутатор ранее.

Тем не менее общий объем передаваемых сетью компьютерных данных в единицу времени при технике коммутации пакетов будет выше, чем при технике коммутации каналов. Это происходит потому, что пульсации отдельных абонентов в соответствии с законом больших чисел распределяются во времени. Поэтому коммутаторы постоянно и достаточно равномерно загружены работой, если число обслуживаемых ими абонентов действительно велико. На рис. 2.30 показано, что трафик, поступающий от конечных узлов на коммутаторы, очень неравномерно распределен во времени. Однако коммутаторы более высокого уровня иерархии, которые обслуживают соединения между коммутаторами нижнего уровня, загружены более равномерно, и поток пакетов в магистральных каналах, соединяющих коммутаторы верхнего уровня, имеет почти максимальный коэффициент использования.

Более высокая эффективность сетей с коммутацией пакетов по сравнению с сетями с коммутацией каналов (при равной пропускной способности каналов связи) была доказана в 60-е годы как экспериментально, так и с помощью имитационного моделирования. Здесь уместна аналогия с мультипрограммными операционными системами. Каждая отдельная программа в такой системе выполняется дольше, чем в однопрограммной системе, когда программе выделяется все процессорное время, пока она не завершит свое выполнение. Однако общее число программ, выполняемых за единицу времени, в мультипрограммной системе больше, чем в однопрограммной.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ

Государственное образовательное бюджетное учреждение

высшего профессионального образования

Московский технический университет связи и информатики

Кафедра сетей связи и систем коммутации

Методические указания

и контрольные задания

по дисциплине

СИСТЕМЫ КОММУТАЦИИ

для студентов заочной формы обучения 4 курса

(направление 210700, профиль - СС)

Москва 2014

План УМД на 2014/2015 уч.г.

Методические указания и контрольные

по дисциплине

СИСТЕМЫ КОММУТАЦИИ

Составитель: Степанова И.В., профессор

Издание стереотипное. Утверждено на заседании кафедры

Сети связи и системы коммутации

Рецензент Маликова Е.Е., доцент

ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО КУРСУ

Дисциплина «Системы коммутации» часть вторая изучается на втором семестре четвертого курса студентами заочного факультета специальности 210406 и является продолжением и дальнейшим углублением аналогичной дисциплины, изучаемой студентами на предыдущем семестре.

В данной части курса рассмат­риваются принципы обмена информацией управления и взаимодействия между системами коммутации, основы проектирования цифровых систем ком­мутации (ЦСК).

По курсу читаются лекции, выполняются курсовой проект и лаборатор­ные работы. Сдается экзамен и защищается курсовой проект. Самостоятель­ная работа по освоению курса заключается в проработке материала учебника и учебных пособий, рекомендованных в методических указаниях, и в выпол­нении курсового проекта.

Если у студента при изучении рекомендованной литературы возникнут затруднения, то вы можете обратиться на кафедру сетей связи и систем коммутации с целью получения необходимой консультации. Для этого в письме не­обходимо указать название книги, год издания и страницы, где изложен не­ясный материал. Курс следует изучать последовательно, тема за темой, как это рекомендовано в методических указаниях. При таком изучении к сле­дующему разделу курса следует переходить после того, как вы ответите на все контрольные вопросы, являющиеся вопросами экзаменационных биле­тов, и решите рекомендованные задачи.

Распределение времени в часах студента для изучения дисциплины «Системы коммутации», часть 2, приведено в таблице 1.

СПИСОК ЛИТЕРАТУРЫ

Основная

1.Гольдштейн Б.С. Системы коммутации. – СПб.:БХВ – Санкт-Петербург, 2003. – 318 с.: ил.

2. Лагутин В. С., Попова А. Г., Степанова И. В. Цифровые системы коммутации каналов в телекоммуникационных сетях связи. – М., 2008. - 214с.

Дополнительная

3.Лагутин В.С., Попова А.Г., Степанова И.В. Подсистема пользователя телефонии для сигнализации по общему каналу. – М. «Радио и связь», 1998.–58 с.

4. Лагутин В.С., Попова А.Г., Степанова И.В. Эволюция интеллектуальных служб в конвергентных сетях. – М.,2008. – 120с.

ПЕРЕЧЕНЬ ЛАБОРАТОРНЫХ РАБОТ

1. Сигнализация 2ВСК и R 1,5, сценарий обмена сигналами между двумя АТС.

2.Управление абонентскими данными на цифровой АТС. Анализ аварийных сообщений цифровой АТС.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО РАЗДЕЛАМ КУРСА

Особенности построения цифровых систем коммутации каналов

Следует изучить особенности построения систем коммутации каналов на примере цифровой АТС типа EWSD. Рассмотреть характеристики и функции цифровых блоков абонентского доступа DLU, реализацию удаленного абонентского доступа. Рассмотреть характеристики и функции линейной группы LTG. Изучить построение коммутационного поля и типовой процесс установления соединения .

Цифровая система коммутации EWSD (Digital Electronic Switching System) разработана фирмой Siemens как универсальная система коммутации каналов для телефонных сетей общего пользования. Пропускная способность коммутационного поля системы EWSD состав­ляет 25200 Эрланг. Число обслуженных вызовов в ЧНН может достигать 1 млн. вызовов. Система EWSD при использовании в качестве АТС позволяет подключать до 250 тысяч абонентских линий. Узел связи на базе этой системы позволяет коммутировать до 60 тысяч соединительных линий. Телефонные станции в контейнерном исполнении позволяют подключать от нескольких сотен до 6000 удаленных абонентов. Выпускаются коммутационные центры для сотовых сетей связи и для организации международной связи. Предусмотрены широкие возможности ор­ганизации путей второго выбора: до семи путей прямого выбора плюс один путь последнего выбора. Могут выделяться до 127 тарифных зон. В течение одного дня тариф может меняться до восьми раз. Генератор­ное оборудование обеспечивает высокую степень стабильности выраба­тываемых частотных последовательностей:

в плезиохронном режиме – 1 10 -9 , в синхронном режиме –1 10 -11 .

Система EWSD рассчитана на использование источни­ков электропитания -60В или -48В. Допускается из­менение температуры в диапазоне 5-40 ° С при влажности 10-80%.

Аппаратные средства EWSD подразделяются на пять основных подсистем (см. рис.1): цифровой абонентский блок (DLU); линейная группа (LTG); коммутационное поле (SN); управляющее устройство сети сигнализации по общему каналу (CCNC); координационный процессор (СР). Каждая подсистема имеет хотя бы один микропроцессор, обозначенный GP. Используются системы сигнализации R1,5 (зарубежный вариант R2), по общему каналу сигнализации №7 SS7 и ЕDSS1. Цифровые абонентские блоки DLU обслуживают: аналоговые абонентские линии; абонентские линии пользователей цифровых сетей с интеграцией служб (ISDN); аналоговые учрежденческие подстанции (УПАТС); цифровые УПАТС. Блоки DLU обеспечивают возможность включения аналоговых и цифровых телефонных аппаратов, многофункциональных терминалов ISDN. Пользователям ISDN предоставляются каналы (2B+D), где В=64 кбит/с - стандартный канал аппаратуры ИКМ30/32, D-канал передачи сигнализации со скоростью 16 кбит/с. Для передачи информации между EWSD и другими системами коммутации используются первичные цифровые соединительные линии (ЦСЛ, англ. РDС) - (30В+1D+синхронизация) на скорости передачи 2048 кбит/с (или на скорости 1544 кбит/с в США).




Рис.1. Структурная схема системы коммутации EWSD

Может использоваться локальный или дистан­ционный режим работы DLU. Удаленные блоки DLU устанавливаются в местах концентрации абонентов. При этом уменьшается длина абонентских линий, а трафик на цифровых соединительных линиях концентри­руется, что приводит к уменьшению затрат на органи­зацию сети распределения и повышает качество передачи.

Применительно к або­нентским линиям допустимым считается сопротивление шлейфа до 2 кОм и сопротивление изоляции - до 20 кОм. Система коммутации мо­жет воспринимать импульсы набора номера от дискового номеронаби­рателя, поступающие со скоростью 5-22 имп/с. Прием сигналов частотно­го набора номера ведется в соответствии с Рекомендацией ССITТ REC.Q.23.

Высокий уровень надежности обеспечивается за счет: подключения каждого DLU к двум LTG; дублирования всех блоков DLU с разделением нагрузки; непрерывно выполняемых тестов самоконтроля. Для передачи управляющей информации между DLU и линейными группами LTG используется сигнализация по общему ка­налу (CCS) по временному каналу номер 16.

Главными элементами DLU являются (рис.2):

модули абонентских линий (SLM) вида SLMA для подключения аналоговых абонентских линий и вида SLMD для подключения абонентских линий ISDN;

два цифровых интерфейса (DIUD) для подключения цифровых систем передачи (PDC) к линейным группам;

два уст­ройства управления (DLUC), управляющих внутренними последовательностями DLU, распределяющих или концентрирующих сигнальные потоки, идущие к абонентским комплектам и от них. Для обеспечения надежности и повышения пропускной способности DLU содержит два контроллера DLUC. Они работают независимо друг от друга в режиме разделения задач. При отказе первого DLUC второй может принять на себя управление всеми задачами;

две сети управления для передачи управляющей информации между модулями абонентских линий и управляющими устройствами;

испытатель­ный блок (TU) для тестирования телефонов, абонентских и соединитель­ных линий.

Характеристики DLU изменяются при переходе от одной модификации к другой. Например, вариант DLUB предусматривает использование модулей аналоговых и цифровых абонентских комплектов с 16 комплектами в каждом модуле. К отдельному абонентскому блоку DLUB можно подключить до 880 аналоговых абонентских линий, а он подключается к LTG с помощью 60 каналов ИКМ (4096 Кбит/с). При этом потери из-за недостатка каналов должны быть практически равны нулю. Для выполнения этого условия пропускная способность одного DLUB не должна превышать 100 Эрл. Если окажется, что средняя нагрузка на один модуль больше 100 Эрл, то следует уменьшать число абонентских линий, включаемых в один DLUB. Могут быть объединены до 6 блоков DLUB в удаленный блок управления (RCU).

В таблице 1 представлены технические характеристики цифрового абонентского блока более современной модификации DLUG.


Таблица 1.Технические характеристики цифрового абонентского блока DLUG

При помощи отдельных линий могут подключаться монетные таксофоны, аналоговые учрежденческо-производственные автоматические телефонные станции РВХ (Private Automatic Branch Exchange) и цифровые РВХ малой и средней емкости.

Перечислим часть наиболее важных функций модуля абонентских комплектов SLMA для подключения аналоговых абонентских линий:

контроль линий для обнаружения новых вызовов;

питание постоянным напряжением с регулируемыми значениями тока;

аналого-цифровые и цифро-аналоговые преоб­разователи;

симметричное подключение вызывных сигналов;

контроль коротких замыканий шлейфа и коротких замыканий на землю;

прием импульсов декадного набора номера и при частотном наборе;

смена полярности питания (переполюсовка проводов для таксофонов);

подключение линейной стороны и стороны абонентского комплекта к многопозиционному тестовому переключателю, защита от перенапряжений;

развязка речевых сигналов по постоянному току;

преобразование двухпроводной линии связи в четырехпроводную линию.

Обращение к функциональным блокам, оборудованным соб­ственными микропроцессорами, осуществляется через сеть управления DLU. Блоки опрашиваются циклически на предмет готовности передачи сообщений, к ним осуществляется прямой доступ для передачи команд и данных. DLUC выполняет также программы испытания и наблюдения с целью распознавания ошибок.

Существуют следующие системы шин DLU: шины управления; шины 4096 кбит/с; шины обнаружения столкновений; шины передачи вызывных сигналов и тарифных импульсов. Сигналы, передаваемые по шинам, синхронизируются тактовыми импульсами. По шинам управления передается управляющая информация со скоростью передачи 187,5 кбит/с; причем эффективная скорость передачи данных составляет примерно 136 кбит/с.

По шинам 4096 кбит/с передаются речь/данные в модули абонентских линий SLM и обратно. Каждая шина имеет в обоих направлениях по 64 канала.

Каждый канал функционирует со скоростью передачи 64 кбит/с (64 х 64 кбит/с = 4096 кбит/с). Назначение каналов шин 4096 кбит/с каналам РDС является фиксированным и определяется через DIUD (см. рис.3). Подклю­чение DLU к линейным группам типа В, F или G (соответственно, типы LTGB, LTGF или LTGG) осуществляется по мультиплексным линиям 2048 кбит/с. DLU может подключаться к двум LTGB, двум LTGF (B) или к двум LTGG.

Линейная группа Line /Trunk Groupe (LTG) образует интерфейс между цифровой средой узла и цифровым коммутационным полем SN (рис.4). Группы LTG выполняют функ­ции децентрализованного управления и освобождают коор­динационный процессор CP от рутинной работы. Соединения между LTG и дублированным коммутационным полем осуществляются по вторичной цифровой линии связи (SDC). Скорость передачи по SDC в направлении от группы LTG к полю SN и в обратном направлении составляет 8192 кбит/с (сокращенно 8 Мбит/с).

Рис.3. Мультиплексирование, демультиплексирование и

передача управляющей информации в DLUC

Рис.4. Различные варианты доступа к LTG

Каждая из этих мультиплексных систем 8 Мбит/с имеет 127 временных интервалов со скоростью 64 кбит/с в каждом для переноса полезной информации, а один временной интервал со скоростью 64 кбит/с используется для передачи сообщений. Группа LTG передает и принимает речевую информацию через обе стороны коммутационного поля (SN0 и SN1), выполняя назначение соответствующему абоненту речевой информации из активного блока коммутационного поля. Другая сторона поля SN рассматривается как неактивная. При возникновении отказа через нее сразу начинаются передача и прием пользовательской информации. Напряжение электропитания LTG составляет +5В.

В LTG реализуются следующие функции обработки вызовов:

прием и интерпретация сигналов, поступающих по соединительным и
абонентским линиям;

передача сигнальной информации;

передача акустических тональных сигналов;

передача и прием сообщений в/из координационный процессор (СР);

передача отчетов в групповые процессоры (GP) и прием отчетов из
групповых процессоров других LTG (см. рис.1);

передача и прием запросов в/из контроллер сети сигнализации по общему каналу (CCNC);

управление сигнализацией, поступающей в DLU;

согласование состояний на линиях с состояниями стандартного интерфейса 8 Мбит/с с дублированным коммутационным полем SN;

установление соединений для передачи пользовательской информации.

Для реализации различных типов линий и способов сигнализации используются несколько типов LTG. Они отличаются реализацией аппаратных блоков и конкретными прикладными программами в групповом процессоре (СP). Блоки LTG имеют большое число модификаций, отличающихся использованием и возможностями. Например, блок LTG функции В используется для подключения: до 4 первичных цифровых линий связи вида PCM30 (ИКМ30/32) со скоростями передачи 2048 кбит/с; до 2 цифровых линий связи со скоростью передачи 4096 кбит/с для ло­кального доступа DLU.

Блок LTG функции С используется для подключения до 4 первичных цифровых линий связи со скоростями 2048 кбит/с.

В зависимости от назначения LTG (В или С) имеются различия в функциональном исполнении LTG, например, в программном обеспечении группового процессора. Исключение составляют современные модули LTGN, которые являются универсальными, и для того, чтобы изменить их функциональное назначение, необходимо «пересоздать» их программно с другой загрузкой (см. табл.2 и рис.4).

Табл.2. Технические характеристики линейной группы N (LTGN)

Как показано на рис.5, помимо стандартных интерфейсов 2 Мбит/с (РСМЗ0) система EWSD обеспечивает внешний системный интерфейс с более высокой скоростью передачи (155 Мбит/с) с мультиплексорами вида STM-1 сети синхронной цифровой иерархии SDH на волоконно-оптических линиях связи. Используется оконечный мультиплексор типа N (синхронный двойной оконечный мультиплексор, SMT1D-N) устанавливаемый на стативе LTGM.

Мультиплексор SMT1D-N может быть представлен в виде базовой конфигурации с 1xSTM1 интерфейсом (60хРСМЗ0) или в виде полной конфигурации с 2xSTM1 интерфейсами (120хРСМЗ0).

Рис.5. Включение SMT1 D-N в сеть

Коммутационное поле SN системы коммутации EWSD соединяет друг с другом подсистемы LTG, CP и CCNC. Главная его задача состоит в установлении соединений между группами LTG. Ка­ждое соединение одновременно устанавливается через обе половины (плоскости) коммутационного поля SN0 и SN1, так что в случае отказа одной из сторон поля всегда имеется резервное соединение. В системах коммутации типа EWSD могут применяться два типа коммутационного поля: SN и SN(B). Коммутационное поле типа SN(B) представляет собой новую разработку и отличается меньшими размерами, более высокой доступностью, снижением потребляемой мощности. Предусмотрены различные ва­рианты организации SN и SN(B):

коммутационное поле на 504 линейные группы (SN:504 LTG);

коммутационное поле на 1260 линейных групп(SN:1260 LTG);

коммутационное поле на 252 линейные группы (SN:252 LTG);

коммутационное поле на 63 линейные группы (SN:63 LTG).

Основными функциями коммутационного поля являются:

коммутация каналов; коммутация сообщений; переключение на резерв.

Коммутационное поле осуществляет коммутацию каналов и соединений со скоростью передачи 64 кбит/с (см. рис. 6). Для каждого соединения необходимы два соединительных пути (например, от вызывающего абонента к вызываемому и от вызываемого абонента к вызывающему). Координационный процессор осуществляет поиск свободных путей через коммутационное поле на основе хранимой в данный момент в запоминающем устройстве информации о занятости соединительных путей. Коммутация соединительных путей осуществляется управляющими устройствами коммутационной группы.

Каждое коммутационное поле имеет собственное управляющее устройство, состоящее из управляющего устройства коммутационной группы (SGC) и модуля интерфейса между SGC и блока буфера сообщений MBU:SGC. При минимальной емкости ступени 63 LTG в коммутации соединительного пути задействовано одно SGC коммутационной группы, однако при емкостях ступеней с 504, 252 или 126 LTG используются два или три SGC. Это зависит от того, соединяются ли абоненты с одной и той же группой временной коммутации TS или нет. Команды для установления соединения задаются каждому задействованному GP коммутационной группы процессором СР.

Кроме соединений, задаваемых абонентами путем набора номера, коммутационное поле коммутирует соединения между линейными группами и координационным процессором СР. Эти соединения используются для обмена управляющей информацией и называются полупостоянными коммутируемыми соединениями. Благодаря этим соединениям производится обмен сообщениями между линейными группами без затраты ресурсов блока координационного процессора. Некоммутируемые (nailed-up) соединения и соединения для сигнализации по общему каналу устанавливаются также по принципу полупостоянных соединений.

Коммутационное поле в системе EWSD характеризуется полной доступностью. Это означает, что каждое 8-разрядное кодовое слово, передаваемое по магистрали, входящей в коммутационное поле, может быть передано в любом другом временном интервале по магистрали, исходящей из коммутационного поля. Во всех магистралях со скоростью передачи 8192 кбит/с имеется по 128 каналов с пропускной способностью передачи 64 кбит/с каждый (128х64 =8192 кбит/с). Ступени коммутационного поля емкостью SN:504 LTG, SN:252 LTG, SN:126 LTG имеют следующую структуру:

одна ступень временной коммутации, входящая (TSI);

три ступени пространственной коммутации (SSM);

одна ступень временной коммутации, исходящая (TSO).

В состав станций малой и средней (SN:63LTG) входят:

одна входящая ступень временной коммутации (TSI);

одна ступень пространственной коммутации (SS);

одна исходящая ступень временной коммутации (TSО).

Рис.6. Пример установления соединения в коммутационном поле SN

Координационный процессор 113 (СР113 или СР113С) представляет собой мультипроцессор, емкость которого наращивается ступенями.В мультипроцессоре СР113С два или несколько идентичных процессоров работают параллельно с разделением нагруз­ки. Главными функциональными блоками мультипроцессора являются: основной процессор (ВАР) для обработки вызовов, эксплуатации и технического обслужива­ния; процессор обработки вызовов (CAP), предназначенный для обработки вызовов; общее запоминающее устрой­ство (CMY); контроллер ввода/вывода (IOC); процессор ввода/вывода (IOР). Каждый процессор ВАР, CAP и IOР содержит один модуль выполнения программы (РЕХ). В зависимости от того, должны ли они быть реализованы в качестве процессоров ВАР, процессоров CAP или контроллеров I0С активизируются специфичные аппаратные функции.

Перечислим основные технические данные ВАР, CAP и IOC. Тип процессора - MC68040, тактовая частота -25МГц, разрядность адреса 32 бита и разрядность данных 32 бита, разрядность слова - 32 бита данных. Данные локальной памяти: расширение - максимум 64 Мбайт (на основе DRAM 16M бит); ступень расширения 16Мбайт. Данные флэш-памяти EPROM: расширение 4 Мбайт. Координационный процессор СР выполняет следующие функции: обработку вы­зовов (анализ цифр номера, управление маршрутизацией, выбор зоны обслуживания, выбор пути в коммутационном поле, учет стоимости разговоров, управление данными о трафике, управление сетью); эксплуатацию и техническое обслуживание - осуществление ввода во внешние запоминающие устройства (ЕМ) и вывода от них, связь с тер­миналом эксплуатации и техобслуживания (ОМТ), связь с процессором передачи данных (DCP). 13


На панель SYP (см. рис.1) выводится внеш­няя аварийная сигнализация, например, информация о пожаре. Внешняя память ЕМ используется для хранения программ и данных, которые не должны постоянно хра­ниться в СР, всей системы прикладных программ для автоматического восстановления данных по тарификации телефонных разговоров и изменению трафика.

Программное обеспечение (ПО) ориентировано на выполнение определенных задач, соответствующих подсистемам EWSD. Операционная система (ОС) состоит из программ приближенных к аппаратным средствам и являющихся обычно одинаковыми для всех систем коммутации.

Максимальная производительность СР по обработке вызо­вов составляет свыше 2700000 вызовов в час наибольшей нагрузки. Характеристики CP системы EWSD: ем­кость запоминающего устройства - до 64 Мбайт; емкость адресации - до 4 Гбайт; магнитная лента - до 4 устройств, по 80 Мбайт каждое; магнитный диск - до 4 устройств, по 337 Мбайт каждое.

Задачей буфера сообщений Message Buffer (МВ) является управление обменом сообщениями:

между координационным процессором СР113, и группами LTG;

между СР113 и контроллерами коммутационных групп SGCB) коммутационного поля;

между группами LTG;

между группами LTG и контроллером сети сигнализации по общему каналу CCNC.

Через МВ могут быть переданы следующие типы информации:

сообщения посылаются от DLU, LTG и SN к координационному процессору СР113;

отчеты посылаются от одного LTG к другому (отчеты маршрутизируются через СР113, но не обрабатываются им);

инструкции посылаются от CCNC к LTG и от LTG к CCNC, они маршрутизируются через СР113, но не обрабатываются им;

команды посылаются от СР113 к LTG и SN. МВ преобразует информацию для передачи через вторичный цифровой поток (SDC) и посылает ее в LTG и SGC.

В зависимости от ступени емкости, дублированное устройство МВ может содержать до четырех групп буферов сообщений (MBG). Эта возможность реализована в сетевом узле с избыточностью, то есть в состав МВ0 входят группы MBG00...MBG03, а в состав МВ1 - группы MBG10...MBG13.

Системы коммутации EWSD с сигнализацией по общему каналу по системе № 7 оборудованы управляющим уст­ройством сети сигнализации по общему каналу ССNС . К устройству CCNC можно подключить до 254 звеньев сигнализации через аналого­вые или цифровые линии связи.

Устройство CCNC подключается к коммутационному полю по уплотненным линиям, имеющим скорость пе­редачи 8 Мбит/с. Между CCNC и каждой плоскостью коммутационного поля имеется 254 канала для каждого направления передачи (254 па­ры каналов).

По каналам передаются данные сигнализации через обе плоскости SN к линейным группам и от них со скоростью 64 кбит/с. Аналоговые сигнальные тракты подключаются к CCNC через модемы. CCNC состоит: из максимально 32 групп с 8 оконечными устройствами сигнальных трактов каждая (32 группы SILT); одного дублированного процессора системы сигнализации по общему каналу (CCNP).

Контрольные вопросы

1.В каком блоке выполняется аналого-цифровое преобразование?

2. Сколько аналоговых абонентских линий может быть максимально включено в DLUB? На какую пропускную способность рассчитан этот блок?

3. На какой скорости передается информация между DLU и LTG, между LTG и SN?

4. Перечислите основные функции коммутационного поля. На какой скорости реализуется соединение между абонентами.

5. Перечислите варианты организации коммутационного поля системы EWSD.

6. Перечислите основные ступени коммутации с коммутационном поле.

7.Рассмотрите прохождение разговорного тракта через коммутационное поле системы коммутации EWSD.

8. Какие функции обработки вызова реализуются в блоках LTG?

9. Какие функции реализует бок МВ?


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-11

В сетях с коммутацией каналов между вызывающей и вызываемой оконечными установками в течение всего времени передачи имеется сквозное соединение (рис. 3.3).

Рис. 3.3. Сегь с коммутацией каналов

Соединительный тракт состоит из ряда участков, которые в процессе установления соединения включаются последовательно друг за другом. Он является «прозрачным» в отношении кодов, используемых в оконечных установках при передаче данных, и методов управления. Время распространения сигнала данных по соединительному тракту постоянно.

В сеансе связи различают три фазы: установление соединения, передачу данных и разъединение соединения (см. рис. 3.1 а). Процессом установления соединения управляет вызывающая

оконечная установка, которая посылает в свой коммутационный узел сигнал вызова, получает от узла ответный сигнал (приглашение к набору номера) и вслед за этим передает в узел адресную информацию (знаки набора номера). Коммутационный узел обрабатывает эту информацию, занимает один из каналов в пучке, ведущем к следующему коммутационному узлу, и передает последнему знаки набора, необходимые для дальнейшего установления соединения. Таким образом постепенно по участкам вплоть до вызываемой оконечной установки образуется соединительный тракт. После завершения этого процесса от сети на вызывающую и вызываемую оконечные установки поступают сигналы, извещающие о том, что соединение включено и готово к передаче данных.

С этого момента ход передачи данных определяется оконечной установкой. В оконечной установке (автоматически или с участием абонента) принимается решение о мерах, которые необходимо принять для обнаружения и исправления ошибок передачи. Меры могут быть различными в зависимости от тех или иных условий работы.

Разъединение может быть начато любой из двух связанных между собой оконечных установок с помощью сигнала отбоя. По этому сигналу все коммутационные узлы, участвующие в образовании соединительного тракта, отключают соединения.

Среди сетей передачи данных с коммутацией каналов различают два типа: синхронные и асинхронные сети.

3.3.1. АСИНХРОННЫЕ СЕТИ С КОММУТАЦИЕЙ КАНАЛОВ

3.3.1.1. ОТЛИЧИТЕЛЬНЫЕ ПРИЗНАКИ АСИНХРОННЫХ СЕТЕЙ

В асинхронных сетях общая синхронизация по элементам отсутствует и для сети не задаются единые «такты». Отдельные АПД и коммутационные устройства имеют самостоятельные, независимые друг от друга тактовые генераторы.

На рис. 3.4 схематически изображена структура такой сети с оконечными установками, многоканальным оборудованием и коммутационными узлами. Для связи оконечных установок с коммутационными узлами используются абонентские линии и каналы многоканальных систем. Коммутационные узлы соединены между собой пучками каналов. Перед узлами пучки расщепляются на отдельные каналы.

Расщепление допускает определенную свободу в организации сети. Например, при передаче по линиям связи могут применяться системы как частотного, так и временного разделения каналов (см. разд. 1.4.2), в узлах сети может устанавливаться аппаратура как пространственной, так и временной коммутации каналов (см. том 1, разд. 6.1.3, а также ). Такая свобода в выборе

Рис. 3.4. Асинхронная сеть с коммутацией каналов

Каналообразующей и коммутационной аппаратуры необходима, в частности, при организации телеграфной связи и передачи данных по общей сети, когда в первую очередь должно использоваться уже имеющееся оборудование телеграфной сети, например, системы тонального телеграфирования (см, разд. 1.4.2.2). Тогда по мере технических и экономических возможностей указанное оборудование постепенно может дополняться или заменяться более совершенным, основанным на новых разработках в области техники связи.

Как показано на рис. 3.4, соединительный тракт между вызывающей и вызываемой оконечными установками состоит из нескольких участков, которые через коммутационные узлы последовательно включены друг за другом. Так как каждый участок тракта передачи и каждый коммутационный узел вносят свою долю в общее искажение передаваемого сигнала данных, то передачу и коммутацию необходимо осуществлять с возможно меньшими искажениями.

Требование минимума искажений важно в первую очередь для неизохронных сигналов, которые принципиально не поддаются коррекции. Изохронные сигналы данных, напротив, могут корректироваться на каждом участке тракта передачи и в каждом коммутационном узле. В системах временного разделения, имеющих синхронные каналы или каналы с образованием знаковых циклов (см. разд. 1.4.2.3), коррекция осуществляется автоматически. В системах частотного разделения, которые допускают передачу с варьируемой скоростью, т. е. являются «прозрачными» (см. 1.4.2.2) для коррекции необходимо устанавливать дополнительные устройства. Однако из-за высоких затрат от этого обычно отказываются, вследствие чего в таких случаях передача и коммутация также должны осуществляться с возможно меньшими искажениями.

3.3.1.2. СИСТЕМЫ ПЕРЕДАЧИ С ВРК В АСИНХРОННЫХ СЕТЯХ С КОММУТАЦИЕЙ КАНАЛОВ

В асинхронной сети С коммутацией каналов каждая система передачи с временным разделением (ВРК) имеет свой собственный синхронизм, не зависимый от синхронизма других систем. Вследствие этого тактовые частоты систем с ВРК различны, т. е. соединительный тракт между абонентами состоит из участков с не совсем одинаковыми скоростями передачи.

В системах с временным разделением синхронных каналов (см. разд. 1.4.2.3), в которых каждому поступающему с ООД биту ставится в соответствие один бит в групповом потоке, из-за различия в скоростях передачи может возникнуть явление проскальзывания сигналов с выпадением битов или добавлением лишних. Это означает, что один из битов не передается далее, так как следующая система имеет слишком низкую скорость передачи, или, наоборот, какой-либо из битов оказывается переданным повторно, так как следующая система имеет слишком высокую скорость (рис. 3.5).

Рис. 3.5. Проскальзывание битов в асинхронной сети с коммутацией каналов

Поэтому в системах с ВРК, работающих в асинхронных сетях с коммутацией каналов, необходимо применять специальные способы выравнивания скоростей, при которых за счет исключения или добавления согласующих («пустых») битов в каждом отдельном канале данных достигается согласование со скоростью передачи по каналам соединительного тракта. Иначе говоря, необходимы системы с временным разделением, имеющие каналы с согласованием скоростей - стаффинговые каналы (см. разд. 1.4.2.3).

С явлением проскальзывания битов следует считаться также в случае применения систем временного разделения, имеющих

каналы с образованием знаковых циклов (см. разд. 1.4.2.3). Такие системы должны выявлять знаковые циклы и устранять расхождения скоростей между каналами данных путем укорочения или удлинения стопового элемента.

В системах временного разделения с «прозрачными» каналами (см. разд. 1.4.2.3), преобразующих сигналы ООД в передаваемую последовательность битов путем позиционно-временного кодирования, проблема проскальзывания битов не возникает. Действительно, в этом случае сигнал после каждого участка передачи характеризуется, в принципе, неменяющимися временными соотношениями и таким же передается далее. Конечно, чтобы искажения, возникающие из-за многократного кодирования, были не слишком велики, неизбежная при кодировании ошибка должна оставаться на достаточно низком уровне.

3.3.1.3. ОБОРУДОВАНИЕ ВРЕМЕННОЙ КОММУТАЦИИ КАНАЛОВ В АСИНХРОННЫХ СЕТЯХ

Если к коммутационным узлам асинхронной сети подключены системы с ВРК, имеющие стаффинговые каналы или каналы с образованием знаковых циклов, то в устройствах последовательной временной коммутации по битам (см. том 1, разд. 6.1.3.2) допустимы искажения сигналов данных, составляющие не более половины единичного интервала.

При использовании систем временного разделения с «прозрачными» каналами или систем частотного разделения каналов искажения, возникающие в процессе последовательной коммутации битов, должны быть весьма малыми, так как они входят в суммарное искажение. Хотя в случае изохронных сигналов данных между коммутационной аппаратурой и многоканальной системой передачи можно было бы установить корректор, в нем потребовалось бы осуществлять описанное в разд. 3.3.1.2. согласование скоростей и пришлось бы примириться со связанными с этим затратами.

При наличии стаффинговых каналов и каналов с образованием знаковых циклов может применяться коммутация групп битов, которая обеспечивает более высокую производительность (см. разд. 2. 1.1.1, пример 3, табл. 2.1).

3.3.1.4. СТРУКТУРА АСИНХРОННОЙ СЕТИ С КОММУТАЦИЕЙ КАНАЛОВ

Структура асинхронной сети с коммутацией каналов показана на рис. 3.6, где изображен нижний уровень сети - часть сети от абонентов до коммутационного узла. Абонентские стыки образуют границу между ООД и сетью передачи данных. В местах расположения абонентов находятся также приборы подключения

(ПП), которые обеспечивают сопряжение ООД с сетью (см. разд. 2.2.2). В тех случаях, когда ООД не управляет непосредстственно через цепи данных стыка процессами установления и разъединения соединений, вместо ПП устанавливаются вызывные приборы (ВП), содержащие необходимые для такого управления элементы (см. разд. 2.2.1).

Рис. 3.6. Структура асинхронной сети с коммутацией каналов:

1 - абонентские стыки; 2 - приборы подключения или вызывные приборы; 3 - абонентские линии; 4 - мультиплексоры; 5 - концентраторы; 6 - соединительные линии; 7 - коммутационный узел

Через абонентские линии ПП и ВП связаны с мультиплексорами или концентраторами, которые обычно размещаются в том же месте, где оборудование коммутационной станции телефонной сети. С помощью мультиплексора образуется пучок каналов, число которых равно числу абонентских линий. Концентратор, наоборот, собирает и уплотняет нагрузку абонентских линий, поэтому в пучке должно быть меньше каналов, чем имеется абонентских линий (см. разд. 2.1.1.2).

Коммутационные узлы сети передачи данных устанавливаются в местах расположения центральных коммутационных станций телефонной сети, а при высокой плотности абонентов - и в местах главных коммутационных станций этой сети. Коммутационные узлы верхнего уровня сети передачи данных связаны между собой разветвленной системой линий.

3.3.1.5. СИНХРОНИЗАЦИЯ ОКОНЕЧНОГО ОБОРУДОВАНИЯ ДАННЫХ

Согласно Рекомендациям МККТТ, касающимся абонентских стыков аппаратуры передачи данных при подключении к сети передачи данных синхронного оконечного оборудования (см. разд. 1.1.3), сеть должна обеспечивать подачу на каждое ООД тактового синхросигнала и взаимный синхронизм по элементам между передающим и принимающим ООД. В асинхронных сетях с коммутацией каналов, где внутренняя общесетевая тактовая синхронизация отсутствует, это требование выполняется за счет установки в ПП или ВП тех абонентов, которые имеют синхронное ООД, синхронных тактовых генераторов. Эти генераторы формируют тактовые сигналы передачи и после установления соединения выделяют из поступающих с противоположной стороны сигналов данных тактовые синхросигналы приема. Достигнутый таким способом синхронизм по элементам является индивидуальным для каждого соединения и сохраняется только на то время, пока данное соединение существует.

3.3.1.6. НЕЗАВИСИМОСТЬ ПЕРЕДАЧИ ОТ ПОСЛЕДОВАТЕЛЬНОСТИ БИТОВ В АСИНХРОННЫХ СЕТЯХ

Передача между синхронными оконечными установками не должна зависеть от вида передаваемой последовательности битов. В асинхронных сетях требуемая независимость может быть обеспечена с помощью скремблеров (см. разд. 2.2.1.1, 2.2.2.2) . Согласно этому методу сигналы, поступающие от ООД, в фазе передачи данных скремблируются (их биты перемешиваются) в ПП или ВП на передающей стороне. В ПП или ВП на приемной стороне сигналы восстанавливаются в их первоначальном виде с помощью дескремблера.

Перед началом передачи ПП или ВП включает скремблер и по истечении времени, которое необходимо дескремблеру на противоположной стороне для вхождения в синхронизм, подает на ООД сигнал, разрешающий передачу. С этого момента скремблер обеспечивает наличие в направляемом на коммутационный узел сигнале смен символов даже в том случае, когда ООД выдает длинную последовательность одинаковых символов. Это предотвращает возможность случайного разъединения против желания абонентов, так как длинная последовательность нулей, которая могла бы быть принята за сигнал отбоя, при этом не появляется.

Если же действительно нужно разъединить соединение, то ПП или ВП, управляемые через стык от ООД, отключают скремблер и посылают в линию связи длинную последовательность нулей. Если в течение определенного интервала времени коммутационный узел принимал только символы «0», подряд следующие друг за другом, то он разъединяет соединение.

Передачу можно сделать независимой от последовательности символов (битов) и другим способом: в последовательность битов, выдаваемую ООД, по определенному правилу с помощью ПП или ВП вводить дополнительные биты. Однако данный метод приводит к повышению скорости передачи (см. разд. 3.3.2.5) и поэтому в асинхронных сетях с коммутацией каналов ограничивает свободу в выборе типа АПД.