Меню
Бесплатно
Главная  /  Образование  /  Примеры графических моделей в повседневной жизни. Конспект урока "Графические информационные модели

Примеры графических моделей в повседневной жизни. Конспект урока "Графические информационные модели

4.8 Графические информационные модели.

Графическая информационная модель – это наглядный способ представления объектов и процессов в виде графических изображений. К ним относятся: чертежи, графики, диаграммы, образные модели, схемы (карты, графы, блок-схемы).

Графические (геометрические) информационные модели передают внешние признаки объекта - размеры, форму, цвет, расположение. В графических информационных моделях для наглядного отобра­жения объектов используются условные графические изображения (образные элементы). Часто графические модели дополняются числами, символами и текстами (знаковыми элементами). В этом случае их называют смешанными моделями.

Образные модели представляют собой зрительные образы объектов, зафиксированные на каком-либо носителе информации (бумаге, фото- и кинопленке и др.). К ним относятся рисунки, фотографии.

Схема - это представление некоторого объекта в общих, главных чертах с помощью условных обозначений. Схема – это графическое отображение состава и структуры сложной системы. С помощью схем может быть представлен и внешний вид объекта, и его структура. Схема как информационная модель не претендует на полноту предоставле­ния информации об объекте. С помощью особых приёмов и графичес­ких обозначений на ней более рельефно выделяется один или не­сколько признаков рассматриваемого объекта.



В информатике особое место занимает построение блок-схем. Блок-схемы наглядно отражают алгоритм, т.е. последовательность действий при решении задачи. Они строятся при программировании – создании новых программ.

Карта описывает конкретную местность, которая является для нее объектом моделирования. Это уменьшенное обобщённое изображение поверхности Земли на плоскости в той или иной системе условных обозначений.

Карта создается с определенными целями для определения:


  • местоположения населенных пунктов;

  • рельефа местности;

  • расположения автомагистралей;

  • измерения расстояний между реальными объектами на местности

  • и т.д.
Сейчас получили большое распространение геоинформационные модели (Например, http://maps.google.ru/ - спутниковая съемка карты местности).

Чертеж – точная геометрическая копия реального объекта. Чертёж - условное графическое изображение предмета с точным соотношением его размеров, получаемое методом проецирования. Чертёж содержит изображения, размерные числа, текст. Изображения дают представления о геометрической форме объекта, числа - о величине объекта и его частей, надписи - о названии, масштабе, в котором выполнены изображения. Чертежи создаются конструкторами, проектировщиками, они должны быть очень точным, т.к. на них указываются все необходимые размеры реального объекта. Существует масса различных компьютерных сред для создания конструкторских чертежей: Автокад, Адем, Компас, 3D MАХ - для трехмерного моделирования и т.д.


Графики и диаграммы - это информационные модели, которые в наглядной форме представляют числовые и статистические данные.

График - линия, дающая наглядное представление о характере зависимости одной величины (например, пути) от другой (например, времени). График – отображение и визуализация различных процессов (природных, экономических, общественных и технических). График позволяет отслеживать динамику изменения дан­ных.

Диаграмма - графическое изображение, дающее наглядное пред­ставление о соотношении каких-либо величин или нескольких зна­чений одной величины, об изменении их значений. Более подробно типы диаграмм и способы их построения будут рассмотрены при из­учении электронных таблиц.


Отдельное место среди графических моделей занимают графы.


4.9 Графы
Графы – замечательные математические объекты, с их помощью можно решать очень много различных, внешне не похожих друг на друга задач. В математике существует целый раздел – теория графов , который изучает графы, их свойства и применение. В информатике по графам строятся программы. В этом параграфе рассмотрены только самые основные понятия, свойства графов и некоторые способы решения задач.

Если объекты некоторой системы изобразить точками (кругами, овалами, прямоугольниками…), а связи между ними - линиями (дугами, стрелками…), то мы получим информационную модель рассматриваемой системы в форме графа. Граф представляет собой набор вершин и соединяющих их ребер. Вершины графа могут быть обозначены буквами, числами, словами…

Если рёбра графа харак­теризуются некоторой дополнительной информацией (выраженной числами), его называют взвешенным , а числа - весами рёбер. Вес рёбер может соответствовать, например, расстоянию между объектами (городами).

Если ребра графа указывают направление (представлены стрелками), то граф называют ориентированным (орграфом). Движение в ориентированном графе возможно тольеко в одном направлении (по стрелкам). Связи между объектами – вершинами в таком случае считаются несимметричными. У неориентированного графа связи между объектами – вершинами симметричны.



Одинаковые, но по-разному нарисованные графы, называют изоморфными . У изоморфных графов соединены одни и те же вершины.

Степенью вершины графа называется количество выходящих из нее ребер. Вершина, имеющая четную степень, называется четной вершиной , Вершина, имеющая нечетную степень, называется нечетной вершиной. На рисунке вершины A, B, D – чётные. Их степень равна 2. Вершины С, Е – нечётные. Их степень равна 3.

С понятием степени вершины связана одна из основных теорем теории графов – теорема о чётности числа нечетных вершин.

Теорема : Любой граф содержит четное число нечетных вершин.

Для иллюстрации рассмотрим задачу.

В городе Маленьком 5 телефонов. Можно ли их соединить проводами так, чтобы каждый телефон был соединен ровно с 3-мя другими?

Решение: Допустим, что такое соединение телефонов возможно. Тогда представим себе граф, в котором вершины обозначают телефоны, а ребра – провода, их соединяющие. Подсчитаем, сколько всего получится проводов. К каждому телефону подключено ровно 3 провода, т.е. степень каждой вершины нашего графа – 3. Чтобы найти число проводов, надо просуммировать степени всех вершин графа и полученный результат разделить на 2 (т.к. каждый провод имеет два конца и при суммировании степеней каждый провод взят 2 раза). (3*5)/2=15/2=7,5

Но это число не целое, то есть количество проводов получится разным. Значит наше предположение о том, что можно соединить каждый телефон ровно с пятью другими, оказалось неверным.

Ответ. Соединить телефоны таким образом невозможно.
Есть еще одно важное понятие, относящееся к графам – понятие связности. Граф называется связным , если любые две его вершины можно соединить путем , т.е. непрерывной последовательностью ребер. Существует целый ряд задач, решение которых основано на понятии связности графа. Граф на рисунке ниже имеет три компоненты связности (состоит из трёх отдельных частей).

Вершина, не имеющая рёбер, называется изолированной вершиной и составляет отдельную компоненту связности. Вершина, имеющая только одно ребро, называется концевой или висячей .

Путь по вершинам и рёбрам графа, в который любое ребро графа входит не более одного раза, называется цепью (1) . Цепь, начальная и конечная вершины которой совпадают, называется циклом (2). Дерево (иерархия ) – это граф, в котором нет циклов (3), т. е. в нём нельзя из не­которой вершины пройти по нескольким различным рёбрам и вер­нуться в ту же вершину. Отличительной особенностью дерева явля­ется то, что между любыми двумя его вершинами существует един­ственный путь.

(1)
(2)
(3)

Всякая иерархическая система может быть представлена с по­мощью дерева. У дерева выделяется одна главная вершина, называе­мая его корнем. Каждая вершина дерева (кроме корня) имеет только одного предка, обозначенный им объект входит в один класс1 высше­го уровня. Любая вершина дерева может порождать несколько по­томков - вершин, соответствующих классам нижнего уровня. Такой принцип связи называется «один-ко-многим». Вершины, не име­ющие порождённых вершин, называются листьями.

Например, родственные связи между членами семьи удобно изображать с по­мощью графа, называемого генеалогическим или родословным дере­вом.

Граф с циклом называется сетью. Если героев некоторого литера­турного произведения представить вершинами графа, а существую­щие между ними связи изобразить рёбрами, то мы получим граф, на­зываемый семантической сетью.

4.10 Использование графов при решении задач
Пример 1. Для того чтобы записать все трёхзначные числа, состо­ящие из цифр 1 и 2, можно воспользоваться графом (деревом)

Дерево можно не строить, если не требуется выписывать все воз­можные варианты, а нужно просто указать их количество. В этом случае рассуждать нужно так: в разряде сотен может быть любая из цифр 1 и 2, в разряде десятков - те же два варианта, в разряде еди­ниц - те же два варианта. Следовательно, число различных вариан­тов: 2 2 2 = 8.

В общем случае, если известно количество возможных вариантов выбора на каждом шаге построения графа, то для вычисления обще­го количества вариантов нужно все эти числа перемножить.

Пример 2. Рассмотрим несколько видоизменённую классическую задачу о переправе.

На берегу реки стоит крестьянин (К) с лодкой, а рядом с ним - собака (С), лиса (Л) и гусь (Г). Крестьянин должен переправиться сам и перевезти собаку, лису и гуся на другой берег. Однако в лодку кроме крестьянина помещается либо только собака, либо только лиса, либо только гусь. Оставлять же собаку с лисой или лису с гу­сем без присмотра нельзя - собака представляет опасность для лисы, а лиса - для гуся. Как крестьянин должен организовать пе­реправу?

Для решения этой задачи составим граф, вершинами которого бу­дут исходное размещение персонажей на берегу реки, а также всевоз­можные промежуточные состояния, достигаемые из предыдущих за один шаг переправы. Каждую вершину-состояние переправы обозна­чим овалом и свяжем рёбрами с состояниями, образованными из неё. Недопустимые по условию задачи состояния выделены пунк­тирной линией; они исключаются из дальнейшего рассмотрения. Начальное и конечное состояния переправы выделены жирной ли­нией.

На графе видно, что существует два решения этой задачи. При­ведём соответствующий одному из них план переправы:


  1. крестьянин перевозит лису;

  2. крестьянин возвращается;

  3. крестьянин перевозит собаку;

  4. крестьянин возвращается с лисой;

  5. крестьянин перевозит гуся;

  6. крестьянин возвращается;

  7. крестьянин перевозит лису.
Пример 3. Рассмотрим следующую игру: сначала в кучке лежит 5 спичек; два игрока убирают спички по очереди, причём за 1 ход можно убрать 1 или 2 спички; выигрывает тот, кто оставит в кучке спичку. Выясним, кто выигрывает при правильной игре - первый (I) или второй (II) игрок.

Игрок I может убрать одну спичку (в этом случае их останется 4) или сразу 2 (в этом случае их останется 3).

Если игрок I оставил 4 спички, игрок II может своим ходом оста­вить 3 или 2 спички. Если же после хода первого игрока осталось 3 спички, второй игрок может выиграть, взяв две спички и оставив одну.

Если после игрока II осталось 3 или 2 спички, то игрок I в каждой из этих ситуаций имеет шанс на выигрыш.

Таким образом, при правильной стратегии игры всегда выиграет первый игрок. Для этого своим первым ходом он должен взять одну спичку.

На рис. 2.8 представлен граф, называемый деревом игры; на нём отражены все возможные варианты, в том числе ошибочные (проиг­рышные) ходы игроков.

Контрольные вопросы.


  1. Какие информационные модели относят к графическим?

  2. Приведите примеры графических информационных моделей, с которыми вы имеете дело:
а) при изучении других предметов; б) в повседневной жизни.

  1. Что такое граф? Что является вершинами и рёбрами графа? Укажите на собственном графе-примере.

  2. Какой граф называют ориентированным? Взвешенным?

  3. Какие графы называют изоморфными?

  4. Что такое степень вершины? Укажите степени вершин в вашем графе.

  5. Сформулируйте теорему о чётности числа нечетных вершин.

  6. Какой граф называют связным? Изобразите граф с двумя компонентами связности.

  7. Какую вершину называют изолированной? Висячей? Укажите на собственном примере – графе.

  8. Что такое путь? Цепь? Цикл? Приведите примеры цепей и циклов, имеющихся в вашем графе.

  9. Что такое дерево? Моделями каких систем могут служить де­ревья? Приведите пример такой системы.

  10. Составьте семантическую сеть по русской народной сказке «Ко­лобок».

| §1.3 Графические информационные модели

Урок 4
§1.3 Графические информационные модели

Ключевые слова:

Схема
карта
чертёж
график
диаграмма
граф
сеть
дерево

1.3.1. Многообразие графических информационных моделей

В графических информационных моделях для наглядного отображения объектов используются условные графические изображения (образные элементы), зачастую дополняемые числами, символами и текстами (знаковыми элементами). Примерами графических моделей могут служить всевозможные схемы, карты, чертежи, графики и диаграммы.

Схема - это представление некоторого объекта в общих, главных чертах с помощью условных обозначений . С помощью схем может быть представлен и внешний вид объекта, и его структура. Схема как информационная модель не претендует на полноту предоставления информации об объекте. С помощью особых приёмов и графических обозначений на ней более рельефно выделяется один или несколько признаков рассматриваемого объекта. Примеры схем приведены на рис. 1.5.

Рис. 1.5. Примеры схем, используемых на уроках физики, биологии, истории

Уменьшенное обобщённое изображение поверхности Земли на плоскости в той или иной системе условных обозначений даёт нам географическая карта.

Чертёж - условное графическое изображение предмета с точным соотношением его размеров, получаемое методом проецирования . Чертёж содержит изображения, размерные числа, текст. Изображения дают представления о геометрической форме объекта, числа - о величине объекта и его частей, надписи - о названии, масштабе, в котором выполнены изображения.

График - графическое изображение, дающее наглядное представление о характере зависимости одной величины (например, пути) от другой (например, времени) . График позволяет отслеживать динамику изменения данных.

Диаграмма - графическое изображение, дающее наглядное представление о соотношении каких-либо величин или нескольких значений одной величины, об изменении их значений . Более подробно типы диаграмм и способы их построения будут рассмотрены при изучении электронных таблиц.

1.3.2. Графы

Если некоторые объекты изобразить вершинами, а связи между ними - линиями, то мы получим информационную модель в форме графа. Вершины графа могут изображаться кругами, овалами, точками, прямоугольниками и т. д. Ненаправленная (без стрелки) линия, соединяющая вершины графа, называется ребром. Линия направленная (со стрелкой) называется дугой; при этом вершина, из которой дуга исходит, называется начальной, а вершина, куда дуга входит, - конечной.

Граф называется неориентированным , если его вершины соединены рёбрами (рис. 1.6, а). Вершины ориентированного графа соединены дугами (рис. 1.6, б). Путь - это последовательность рёбер (дуг), по которым можно перейти из одной вершины в другую.

Граф называется взвешенным , если его вершины или рёбра характеризуются некоторой дополнительной информацией - весами вершин или рёбер. На рис. 1.6, в с помощью взвешенного неориентированного графа изображены дороги между пятью населёнными пунктами А, В, С, D, Е; веса рёбер - протяжённость дорог в километрах.

Путь по вершинам и рёбрам графа, в который любое ребро графа входит не более одного раза, называется цепью. Цепь, начальная и конечная вершины которой совпадают, называется циклом.

Рис. 1.6. Графы

Граф с циклом называется сетью . Если героев некоторого литературного произведения представить вершинами графа, а существующие между ними связи изобразить рёбрами, то мы получим граф, называемый семантической сетью.

Графы как информационные модели находят широкое применение во многих сферах нашей жизни. Например, можно существующие или вновь проектируемые дома, сооружения, кварталы изображать вершинами, а соединяющие их дороги, инженерные сети, линии электропередач и т. п. - рёбрами графа. По таким графам можно планировать оптимальные транспортные маршруты, кратчайшие объездные пути, расположение торговых точек и других объектов.

Дерево - это граф, в котором нет циклов , т. е. в нём нельзя из некоторой вершины пройти по нескольким различным рёбрам и вернуться в ту же вершину. Отличительной особенностью дерева является то, что между любыми двумя его вершинами существует единственный путь.

Всякая иерархическая система может быть представлена с помощью дерева . У дерева выделяется одна главная вершина, называемая его корнем. Каждая вершина дерева (кроме корня) имеет только одного предка, обозначенный предком объект входит в один класс1* высшего уровня. Любая вершина дерева может порождать несколько потомков - вершин, соответствующих классам нижнего уровня. Такой принцип связи называется «один-ко-многим». Вершины, не имеющие порождённых вершин, называются листьями.

Родственные связи между членами семьи удобно изображать с помощью графа , называемого генеалогическим или родословным деревом.

Ресурс «Живая Родословная» (145555) - инструмент для формирования и анализа генеалогических деревьев, содержащий примеры родословных. С его помощью вы можете изучить генеалогические деревья многих известных семей и построить генеалогическое дерево своей семьи (http://sc.edu.ru/) .

Класс - множество объектов, обладающих общими признаками .

1.3.3. Использование графов при решении задач

Графы удобно использовать при решении некоторых классов задач .

Пример 1 . На рисунке 1.7 изображена схема дорог, связывающих торговые точки А, В, С, D, Е. По каждой дороге можно двигаться только в направлении, указанном стрелкой. Сколько существует различных путей от точки А до точки Е?

Рис. 1.7. Схема дорог, представленная ориентированным графом

В вершину Е можно попасть только из вершин С и D. Если мы будем знать число путей из вершины А в вершину С и из вершины А в вершину D, то, сложив их, получим искомое число путей из А в Е. Действительно, для того чтобы попасть из вершины А в вершину Е, мы просто все пути из вершины А в вершину С дополним дугой СЕ, а пути из вершины А в вершину D дополним дугой DE. Число путей при этом не изменится. Итак, число путей из вершины А в вершину Е равно сумме путей из А в С и из А в П.

Можно сказать, что наша задача распалась на две более простые задачи. Решим каждую из них в отдельности.

В вершину С можно попасть непосредственно из вершины А и из вершины В. В свою очередь, существует единственный путь из вершины А в вершину В. Таким образом, из вершины А в вершину С можно попасть двумя путями: 1 (напрямую из А) + 1 (через В) = 2.

Попробуйте доказать, что путь из вершины А в вершину В - единственный.

Что касается вершины D, она является конечной вершиной для трёх дуг: BD, AD и CD. Следовательно, в неё можно попасть из вершин А, В и С:

Итак, существуют четыре пути из вершины А в вершину D.

Теперь выполним подсчёт путей из А в Е:

2 (через С) + 4 (через D) = 6.

Решение задачи будет гораздо проще, если двигаться от вершины А (начало маршрута) к вершине Е и проставлять веса вершин - число путей из А в текущую вершину (рис. 1.8). При этом вес вершины А можно принять за 1. Действительно, существует единственный способ попасть из А в А - оставаться на месте.

Рис. 1.8. Схема дорог, представленная взвешенным ориентированным графом

Пример 2. Для того чтобы записать все трёхзначные числа, состоящие из цифр 1 и 2, можно воспользоваться графом (деревом) на рис. 1.9.

Дерево можно не строить, если не требуется выписывать все возможные варианты, а нужно просто указать их количество. В этом случае рассуждать нужно так: в разряде сотен может быть любая из цифр 1 и 2, в разряде десятков - те же два варианта, в разряде единиц - те же два варианта. Следовательно, число различных вариантов: 2 2 2 = 8.

Рис. 1.9. Дерево для решения задачи о записи трёхзначных чисел

В общем случае, если известно количество возможных вариантов выбора на каждом шаге построения графа, то для вычисления общего количества вариантов нужно все эти числа перемножить. (Вспомните правило умножения из комбинаторики!)

Пример 3 . Рассмотрим несколько видоизменённую классическую задачу о переправе.

На берегу реки стоит крестьянин (К) с лодкой, а рядом с ним - собака (С), лиса (Л) и гусь (Г). Крестьянин должен переправиться сам и перевезти собаку, лису и гуся на другой берег. Однако в лодку кроме крестьянина помещается либо только собака, либо только лиса, либо только гусь. Оставлять же собаку с лисой или лису с гусём без присмотра крестьянина нельзя - собака представляет опасность для лисы, а лиса - для гуся. Как крестьянин должен организовать переправу?

Для решения этой задачи составим граф, вершинами которого будут исходное и результирующее размещение персонажей на берегах реки, а также всевозможные промежуточные состояния, достигаемые из предыдущих за один шаг переправы. Каждую вершину-состояние переправы обозначим овалом и свяжем рёбрами с состояниями, образованными из неё (рис. 1.10).

Недопустимые по условию задачи состояния выделены пунктирной линией; они исключаются из дальнейшего рассмотрения. Начальное и конечное состояния переправы выделены жирной линией.

На графе видно, что существуют два решения этой задачи. Приведём соответствующий одному из них план переправы:

1) крестьянин перевозит лису;
2) крестьянин возвращается;
3) крестьянин перевозит собаку;
4) крестьянин возвращается с лисой;
5) крестьянин перевозит гуся;
6) крестьянин возвращается;
7) крестьянин перевозит лису.

Пример 4. Рассмотрим следующую игру: сначала в кучке лежат 5 спичек; два игрока убирают спички по очереди, причём за 1 ход можно убрать 1 или 2 спички; выигрывает тот, кто оставит в кучке 1 спичку. Выясним, кто выигрывает при правильной игре - первый (I) или второй (II) игрок.

Игрок I может убрать одну спичку (в этом случае их останется 4) или сразу 2 (в этом случае их останется 3).

Если игрок I оставил 4 спички, игрок II может своим ходом оставить 3 или 2 спички. Если же после хода первого игро- . ка останутся 3 спички, второй игрок может выиграть, взяв две спички и оставив одну.

Если после игрока II осталось 3 или 2 спички, то игрок I в каждой из этих ситуаций имеет шанс на выигрыш.

Таким образом, при правильной стратегии игры всегда выиграет первый игрок. Для этого своим первым ходом он должен взять одну спичку.

На рис. 1.11 представлен граф, называемый деревом игры; на нём отражены все возможные варианты, в том числе ошибочные (проигрышные) ходы игроков.

Рис. 1.11. Дерево игры

САМОЕ ГЛАВНОЕ

В графических информационных моделях для наглядного отображения объектов используются условные графические изображения (образные элементы), зачастую дополняемые числами, символами и текстами (знаковыми элементами). Примерами графических моделей могут служить всевозможные схемы, карты, чертежи, графики и диаграммы, графы.

Граф состоит из вершин, связанных линиями - рёбрами или дугами . Граф называется взвешенным , если его вершины или рёбра (дуги) характеризуются некоторой дополнительной информацией - весами вершин (рёбер, дуг).

Граф иерархической системы называется деревом . Отличительной особенностью дерева является то, что между любыми двумя его вершинами существует единственный путь.

Вопросы и задания

1. Ознакомьтесь с материалами презентации к параграфу, содержащейся в электронном приложении к учебнику. Что вы можете сказать о формах представления информации в презентации и в учебнике? Какими слайдами вы могли бы дополнить презентацию?

2. Какие информационные модели относят к графическим?

3. Приведите примеры графических информационных моделей, с которыми вы имеете дело:

а) при изучении других предметов;
б) в повседневной жизни.

4. Что такое граф? Что является вершинами и рёбрами графа на рис. 1.6, в? Приведите примеры цепей и циклов, имеющихся в этом графе. Определите, какие два пункта наиболее удалены друг от друга (два пункта считаются самыми удалёнными, если длина кратчайшего пути между ними больше, чем длина кратчайшего пути между любыми другими двумя пунктами). Укажите длину кратчайшего пути между этими пунктами.

5. Приведите пример системы, модель которой можно представить в форме графа. Изобразите соответствующий граф.

6. Грунтовая дорога проходит последовательно через населённые пункты А, В, С и D. При этом длина грунтовой дороги между А и В равна 40 км, между В и С - 25 км, и между С и D - 10 км. Между А и D дороги нет. Между А и С построили новое асфальтовое шоссе длиной 30 км. Оцените минимально возможное время движения велосипедиста из пункта А в пункт В, если его скорость по грунтовой дороге - 20 км/ч, по шоссе - 30 км/ч.

7. На рисунке изображена схема дорог, связывающих торговые точки А, Б, В, Г, Д, Б, К. По каждой дороге можно двигаться только в направлении, указанном стрелкой. Сколько существует различных путей от точки А до точки К?

8. Работая в группе, составьте семантическую сеть по одной из русских народных сказок: «Колобок», «Курочка Ряба», «Репка».

9. Что такое дерево? Моделями каких систем могут служить деревья? Приведите пример такой системы.

10. Сколько трёхзначных чисел можно записать с помощью цифр 2, 4, 6 и 8 при условии, что в записи числа не должно быть одинаковых цифр?

11. Сколько существует трёхзначных чисел, все цифры которых различны?

12. Для составления цепочек используются бусины, помеченные буквами А, В, С, D, Е. На первом месте в цепочке стоит одна из бусин А, С, Е. На втором - любая гласная, если первая буква гласная, и любая согласная, если первая согласная. На третьем месте - одна из бусин С, D, Е, не стоящая в цепочке на первом месте. Сколько цепочек можно создать по этому правилу?

13. Два игрока играют в следующую игру. Перед ними лежит куча из 6 камней. Игроки берут камни по очереди. За один ход можно взять 1, 2 или 3 камня. Проигрывает тот, кто забирает последний камень. Кто выигрывает при безошибочной игре обоих игроков - игрок, делающий первый ход, или игрок, делающий второй ход? Каким должен быть первый ход выигрывающего игрока? Ответ обоснуйте.

Информационная модель – модель объекта, представленная в виде информации, описывающей существенные для данного рассмотрения параметры и переменные величины объекта, связи между ними, входы и выходы объекта, и позволяющая путем подачи на модель информации об изменениях входных величин моделировать возможные состояния объекта.

Информационные модели нельзя потрогать или увидеть, она не имеют материального воплощения, потому что строятся только на информации. Информационная модель – совокупность информации, характеризующая существенные свойства и состояния объекта, процесса, явления, а также взаимосвязь с внешним миром.

Информационная модель – формальная модель ограниченного набора фактов, понятий или инструкций, предназначенная для удовлетворения конкретному требованию.

Для построения информационной модели необходимо пройти ряд стадий, представленных на схеме 3. Процесс, проводимый от «объекта познания» жл «формальной конструкции», носит название «формализация», а обратный процесс – «интерпретация» - чаще всего используется в познании мира и обучении.

В основе информационного моделирования лежат три постулата:

    все состоит из элементов;

    элементы имеют свойства;

    элементы связаны между собой отношениями.

Объект, к которому применимы эти постулаты, может быть представлен информационной моделью.

Стадии построения информационной модели.

Ф Объект познания И

О Познающие субъекты Н

Р Личностное представление Т

М Сформировавшаяся мысль Е

А «Живое» слово Р

Л Записанное слово П

И Научный текст Р

З Формальные конструкции Е

Классификации информационных моделей:

-по способу описания:

С помощью формальных языков (язык математики, таблицы, языки программирования, расширение естественного языка человека и т.д.);

Графические (блок-схемы, диаграммы, графики и т.д.).

-по цели создания:

Классификационное (древовидные, генеалогическое дерево, дерево каталогов в компьютере);

Динамические (как правило, строятся на основе решения дифференциальных уравнений и служат для решения задач управления и прогнозирования).

- по природе моделируемого объекта:

Детерминированные (определенные), для которых известны законы, по которым изменяется или развивается объект;

Вероятностные (обработка статистической неопределенности и некоторых видов нечеткой информации).

    Историческое происхождение и методологическое значение понятий модели и аналогии.

Слово «модель» произошло от латинского слова «modulus», означает «мера», «образец». Его первоначальное значение было связано со строительным искусством, и почти во всех европейских языках оно употреблялось для обозначения образа или прообраза, или вещи, сходной в каком-то отношении с другой вещью.

Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки. Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ век. Однако методология моделирования долгое время развивалась отдельными науками независимо друг от друга. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания.

Термин «модель» широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений. В этом разделе мы будем рассматривать только такие модели, которые являются инструментами получения знаний.

Таким образом,модель – упрощенное представление о реальном объекте, процессе или явлении. Модель – это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале.

Под моделированием понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез.Моделирование – построение моделей для исследования и изучения объектов, процессов, явлений.

Модели объектов должны отражать нечто реально существующее. Поэтому часто под моделями объектов понимают абстрактное обобщение реально существующих объектов. Например, моделями объектов могут быть копии архитектурных сооружений, Солнечной системы, структура парламентской власти в стране и т.д. Модель может описывать явления живой и неживой природы, причем не одно, а целый класс явлений с общими свойствами. В моделях объектов или явлений отражаются свойства оригинала – его характеристики, параметры.

Можно также создавать модели процессов, т.е. моделировать действия над материальными объектами: ход, последовательную смену состояний, стадий развития одного объекта или их системы. Примеры тому общеизвестны: это модели экономических или экологических процессов, развития Вселенной или общества и т. п.

Методологическая основа моделирования .

В основе теории моделирования лежит системный подход. Системный подход заключается в том, что исследователь пытается изучать поведение системы в целом, а не концентрировать свое внимание на отдельных ее частях. Такой подход основывается на признании того, что если даже каждый элемент или подсистема имеет оптимальные конструктивные или функциональные характеристики, то результирующее поведение системы в целом может оказаться лишь субоптимальным вследствие взаимодействия между ее отдельными частями.

Возрастающая сложность организационных систем и потребность преодолеть эту сложность привели к тому, что системный подход становится все более и более необходимым методом исследования.

Определенная совокупность элементов рассматриваемой системы может представляться как ее подсистема. Считается, что к подсистемам относят некоторые самостоятельно функционирующие части системы. Поэтому для упрощения процедуры исследования первоначально необходимо грамотно выделить подсистемы сложной системы, то есть – определить ее структуру. Структура системы – это устойчивая во времени совокупность взаимосвязей между ее компонентами (подсистемами). И при системном подходе важным этапом является определение структуры изучаемой, описываемой системы.

Система – целое, составленное из частей. Система – множество элементов находящихся в отношениях и связях друг с другом и образующих определенное целостность и единство.

    Компьютерная модель.

Компьютерная модель – модель, реализованная средствами программной среды.

Имея дело с компьютером как с инструментом, нужно помнить, что он работает с информацией. Поэтому следует исходить из того, какую информацию и в каком виде может воспринимать и обрабатывать компьютер. Современный компьютер способен работать со звуком, видеоизображением, анимацией, текстом, схемами, таблицами и т.д. Но для использования всего многообразия информации необходимо как техническое (Hardware), так и программное (Software) обеспечение. И то и другое – инструменты компьютерного моделирования. Сейчас имеется широкий круг программ, позволяющих создавать различные виды компьютерных знаковых моделей: текстовые процессоры, редакторы формул, электронные таблицы, системы управления в базах данных, профессиональные системы проектирования, а также различные среды программирования.

Современные ЭВМ представляют широкие возможности для моделирования различных явлений и процессов. В учебном процессе ЭВМ не должна просто заменять классную доску, плакат, кино- и диапроектор, натуральный эксперимент. Такая замена целесообразна только тогда, когда использование ЭВМ даст весомый дополнительный эффект по сравнению с использованием других средств обучения.

компьютерное моделирование (КМ) является перспективным методом активизации учебного процесса. Оно приобретает все большее и большее значение в современном научном познании, и, кроме того, в настоящее время становится популярным дидактическим средством. Рассмотрим это направление подробнее.

Предметом КМ является изучение процессов и явлений с помощью компьютера, который при этом выступает в роли экспериментальной установки. При использовании КМ для решения задач выделяются этапы постановки задачи, разработки модели, компьютерного (вычислительного) эксперимента, анализа результатов моделирования. Если результаты моделирования не соответствуют цели, то возникает необходимость возвращения на предыдущие этапы.

    Математические модели.

Математическое моделирование позволяет при помощи математических символов и зависимостей составить описание происходящего процесса.

Математическая модель - это совокупность математических объектов и соотношений между ними, адекватно отображающая свойства и поведение исследуемого объекта. Модель считается адекватной, если отражает исследуемые свойства с приемлемой точностью. Точность оценивается степенью совпадения предсказанных в процессе вычислительного эксперимента на модели значений выходных параметров с истинными их значениями.

Математическая модель охватывает класс неопределяемых (абстрактных, символических) математических объектов таких, как числа или векторы, и отношения между этими объектами.

Математическое отношение – это гипотетическое правило, связывающее два или более символических объекта. Многие отношения могут быть описаны при помощи математических операций, связывающих один или несколько объектов с другим объектом или множеством объектов (результатом операции).

Математическая модель будет воспроизводить подходящим образом выбранные стороны физической ситуации, если можно установить правило соответствия, связывающее специфические физические объекты и отношения с определенными математическими объектами и отношениями. Поучительным и/или интересным может также быть и построение математических моделей, для которых в физическом мире аналогов не существует. Наиболее общеизвестными математическими моделями являются системы целых и действительных чисел и евклидова геометрия; определяющие свойства этих моделей представляют собой более или менее непосредственные абстракции физических процессов (счет, упорядочение, сравнение, измерение).

Объекты и операции более общих математических моделей часто ассоциируются с множествами действительных чисел, которые могут быть соотнесены с результатами физических измерений.

В качестве математических объектов выступают числа, переменные, множества, векторы, матрицы и т.п.

Классификация математических моделей на основе особенностей применяемого математического аппарата .

Какие примеры информационных моделей можно привести для образовательных учреждений? Как педагоги могут использовать их в своей работе? Попробуем вместе найти ответы на поставленные вопросы.

Что такое модель

Что такое знаковые информационные модели? Примеры их используют в своей работе все учителя, которые владеют современными информационными технологиями. В общем виде модель - это разные способы представления анализируемой реальности.

Разновидности

Можно привести примеры информационных моделей материального и идеального вида.

Натурные варианты базируются на объективном примере, они существуют независимо от человека, его сознания. В настоящее время их подразделяют на физические и аналоговые варианты, которые основываются на явлениях, связанных с изучаемым предметом.

Идеальные модели связаны с мышлением человека, его восприятием, воображением. Среди них можно отметить интуитивные, которые не подходят ни под один вариант классификации.

Приводя примеры образной информационной модели, можно упомянуть одну из таких моделей. Рассмотрим подробнее их классификацию.

Текстовые идеальные модели

Вербальные модели применяют преподаватели гуманитарного цикла. Они помогают описывать последовательными предложениями определенную область, явление, объект, событие. Как будет выглядеть такая информационная модель урока? Пример возьмем из курса литературы. При изучении романа Л. Н. Толстого «Война и мир», учитель описывает образ Наташи Ростовой. Для этого он пользуется именно текстовой моделью. Ребята, слушая педагога, создают на основе его восприятия образа этой героини, свой образ героини Толстого.

Если учитель истории просит своих воспитанников: «Приведите примеры образной информационной модели событий, произошедших во время Куликовской битвы, основываясь на просмотренных фрагментах», ребята создают свой образ того сражения. Они передают его в виде связанных в рассказ предложений.

Можно привести примеры информационных моделей вербального вида и из курса физики. При изучении темы «Давление твердых тел» в седьмом классе, учитель рассказывает детям, как сложно передвигаться по рыхлому снегу без лыж. Затем школьникам предлагается объяснить причину подобного явления, выявить параметры, от которых зависит изучаемая физическая величина. Образ, который возникает в сознание ребят после рассказа педагога, помогает им ответить на поставленный вопрос.

В качестве примеров подобной модели можно отметить учебник, правила дорожного движения.

Математические модели

Они считаются широким классом знаковых моделей. Основываются математические модели на использовании соотношений, сравнений, иных методах, применяемых в данной науке. Приводя примеры информационных моделей, основанных на математических методах, можно упомянуть решение квадратных уравнений, составление пропорций. Все разделы геометрии, предполагающие вывод и доказательство теорем, также связаны с построением математической модели. Не обходится без них и такой школьный предмет как экономика.

Информационные модели

Они считаются классом знаковых моделей, которые описывают любые информационные процессы: появление, передачу, изменение, применение информации в разных системах. Примеры табличных информационных моделей в школе можно найти в курсе географии 10 класса. При изучении экономической географии табличная модель помогает наглядно видеть основные характеристики страны, использовать материал для составления полного рассказа.

Кроме того примеры табличных информационных моделей можно найти в любом школьном курсе. В химии это таблица растворимости соединений, а также периодическая система Менделеева. В физике без таблиц учителю сложно объяснить основные термины, изучаемые в теме «Электричество». В истории с их помощью осуществляется систематизация знаний, ребята вписывают в один столбик важные исторические даты, а в другом - описывают события, которые им соответствуют.

Взаимосвязь моделей

Между информационными, математическими, вербальными моделями существует условная грань. Все 3 примера информационных моделей встречаются в школьных дисциплинах. Так, для математики, физики, информатики, самыми востребованными считают математические и информационные варианты. Но без вербальной модели ребята не смогут объяснить явления, алгоритмы, уравнения и неравенства.

Особенности моделирования

Прежде чем рассматривать примеры графических информационных моделей, выясним особенности моделирования. Модель представляет собой объект, созданный искусственно. Это необходимо для упрощения представления о настоящем объекте либо явлении. Модель в полной мере отражает все особенности самого исходного процесса. Если дано задание: «Приведите пример информационной модели», необходимо понимать суть процесса.

Речь идет о построении модели, которая предназначена для изучения информационных явлений, процессов. В информатике в качестве такого предмета можно рассматривать программирование. Используя определенный математический язык программирования, можно представить текстовый материал в графическом виде.

Моделирование предполагает построение той модели, которая предназначена для исследования и изучения исходного объекта, явления, процесса. Созданная копия лишь наделена теми качествами и свойствами, которые характерны для исходного предмета, но допускает некоторые отклонения от идеала.

Деятельностный подход

Полноценные модели можно получать при использовании системного подхода. Это особенно актуально в рамках образовательных учреждений. Преобразования, которые коснулись школ в последние годы, позволили установить логическую связь между отдельными дисциплинами.

Такой деятельностный вариант обучения способствует формированию гармонически развитой личности, понимающей единство живого мира, взаимосвязь отдельных процессов и явлений.

Если учителя просят: «Приведите пример информационной модели», он смело может выбирать любой учебный предмет. Нет такой дисциплины, в которой бы не применялись таблицы, графики, диаграммы, презентации.

Особенности современной школы

Новые стандарты, которые были введены в российские школы, предполагают рассмотрение одного явления с разных точек зрения. Например, из курса физики ребята узнают о том, что электроны необходимы для протекания в металлах электрического тока. Они получают информацию о заряде этой отрицательной частицы, определении их количества у разных металлов. На уроках химии школьникам рассказывают о вероятности размещения электронов на энергетических уровнях.

При изучении темы «Окислительно-восстановительные реакции» у школьников появляется информация о том, что происходит с этими отрицательными частицами при химическом взаимодействии. Несмотря на то что информация предоставляется с разных позиций, речь идет об одном объекте - электронах. Подобный системный подход позволяет формировать в сознании школьников полное представление о строении вещества, его превращениях.

В приведенном примере изучаемый объект рассматривается как полная система, составная часть единого целого (вещества). В зависимости от учебной дисциплины используют определенные характеристики, дополнения. В случае системного подхода на первое место выходят не причинные пояснения существования объекта, а необходимость включения с него иных составных частей.

Особое значение формирование универсальных моделей приобретает при экспериментальной деятельности. Используя персональный компьютер, можно провести вычисления параметров, которые будут связаны с анализируемым объектом.

Такое моделирование важно для научного познания природных явлений. В школьном курсе информатики такие действия именуют вычислительным экспериментом, который базируется на трех важных понятиях: модели, алгоритме, программе.

Использование в рамках школы персонального компьютера возможно по трем основным вариантам:

  • проведение с помощью ПК прямых расчетов;
  • создание базы данных, превращение ее в программу либо определенный алгоритм;
  • поддержание между компьютером и школьником интерфейса.

Признаки моделей

Среди самых распространенных признаков, по которым можно провести классификацию всех моделей, выделим: цель применения, сферу знаний, временной фактор, вариант представления.

В зависимости от того, какая цель поставлена перед моделью, выделяют опытные, учебные, игровые, имитационные, научно-технические варианты моделей. Так, например, на начальной ступени школьного образования, наиболее применимыми и значимыми игровые технологии, позволяющие ребятам ощутить себя в роли учителя, врача, полицейского. Игровые модели у детей семи-восьми лет хорошо сформированы, поскольку в дошкольных образовательных учреждениях они применяются в качестве обязательного элемента при формировании личностных качеств ребенка.

Разновидности моделей

В зависимости от области знаний, для которых составляется модель, в настоящее время выделяют экономические, биологические, социологические, химические виды. К примеру, для естественнонаучного цикла важно сформировать такую модель, которая бы позволяла объяснять явления, происходящие в живой и неживой природе. В социологии акцент делают на процессы, происходящие в социуме.

По временному фактору выделяют статические и динамические варианты моделей. Статический вариант характеризует параметры и строение объекта, позволяет описывать выбранное явление (объект) в конкретный промежуток времени, помогает получать о нем достоверную и своевременную информацию.

У любой модели существует конкретная форма, вид, вариант представления, описание. В школе предполагается рассмотрение в большей степени материальных и нематериальных моделей, в зависимости от специфики учебной дисциплины.

Материальные модели предполагают реальное воплощение, они в полной мере повторяют внутреннее либо внешнее строение самого объекта. Например, в географии в качестве такой уменьшенной модели выступает макет земного шара (глобус), на котором нанесены все моря и океаны, материки и острова. Данные модели непосредственным образом связаны с исследовательским подходом к обучению современных школьников. Они необходимы при преподавании химии, физики, биологии, астрономии, географии.

Нематериальное моделирование предполагает использование теоретического способа познания.

Заключение

Любая информационная модель представляет собой совокупность информации об явлении, объекте, процессе. С ее помощью можно охарактеризовать любой процесс, происходящий в живой и неживой природе. Разнообразные графики, карты, таблицы, диаграммы, которые активно применяются педагогами на всех ступенях обучения, дают свой положительный результат.

Интуитивное (мысленное) моделирование способствует созданию первого впечатления о процессе, происходящем в химии или биологии. Благодаря совокупности всех вариантов информационных моделей, у подрастающего поколения нашей страны формируется адекватная оценка единства живого и неживого мира. Выпускники школ могут самостоятельно выстраивать любые модели, использовать их для изучения, анализа, оценки событий и явлений.