Меню
Бесплатно
Главная  /  Образование  /  Аcимметричные алгоритмы шифрования. Современные алгоритмы шифрования Все алгоритмы шифрования

Аcимметричные алгоритмы шифрования. Современные алгоритмы шифрования Все алгоритмы шифрования

Среди разнообразнейших способов шифровании можно выделить следующие основные методы:

Алгоритмы замены или подстановки - символы исходного текста заменяются на символы другого (или того же) алфавита в соответствии с заранее определенной схемой, которая и будет ключом данного шифра. Отдельно этот метод в современных криптосистемах практически не используется из-за чрезвычайно низкой криптостойкости.

Алгоритмы перестановки - символы оригинального текста меняются местами по определенному принципу, являющемуся секретным ключом. Алгоритм перестановки сам по себе обладает низкой криптостойкостью, но входит в качестве элемента в очень многие современные криптосистемы.

Алгоритмы гаммирования - символы исходного текста складываются с символами некой случайной последовательности. Самым распространенным примером считается шифрование файлов «имя пользователя.рwl», в которых операционная система Microsoft Windows 95 хранит пароли к сетевым ресурсам данного пользователя (пароли на вход в NT-серверы, пароли для DialUр-доступа в Интернет и т.д.). Когда пользователь вводит свой пароль при входе в Windows 95, из него по алгоритму шифрования RC4 генерируется гамма (всегда одна и та же), применяемая для шифрования сетевых паролей. Простота подбора пароля обусловливается в данном случае тем, что Windows всегда предпочитает одну и ту же гамму.

Алгоритмы, основанные на сложных математических преобразованиях исходного текста по некоторой формуле. Многие из них используют нерешенные математические задачи. Например, широко используемый в Интернете алгоритм шифрования RSA основан на свойствах простых чисел.

Комбинированные методы. Последовательное шифрование исходного текста с помощью двух и более методов.

Алгоритмы шифрования

Рассмотрим подробнее методы криптографической защиты данных

1. Алгоритмы замены(подстановки)

2. Алгоритм перестановки

3. Алгоритм гаммирования

4. Алгоритмы, основанные на сложных математических преобразованиях

5. Комбинированные методы шифрования

Алгоритмы 1-4 в «чистом виде» использовались раньше, а в наши дни они заложены практически в любой, даже самой сложной программе шифрования. Каждый из рассмотренных методов реализует собственный способ криптографической защиты информации и имеет собственные достоинства и недостатки, но их общей важнейшей характеристикой является стойкость. Под этим понимается минимальный объем зашифрованного текста, статистическим анализом которого можно вскрыть исходный текст. Таким образом, по стойкости шифра можно определить предельно допустимый объем информации, зашифрованной при использовании одного ключа. При выборе криптографического алгоритма для использования в конкретной разработке его стойкость является одним из определяющих факторов.

Все современные криптосистемы спроектированы таким образом, чтобы не было пути вскрыть их более эффективным способом, чем полным перебором по всему ключевому пространству, т.е. по всем возможным значениям ключа. Ясно, что стойкость таких шифров определяется размером используемого в них ключа.

Приведу оценки стойкости рассмотренных выше методов шифрования. Моноалфавитная подстановка является наименее стойким шифром, так как при ее использовании сохраняются все статистические закономерности исходного текста. Уже при длине в 20-30 символов указанные закономерности проявляются в такой степени, что, как правило, позволяет вскрыть исходный текст. Поэтому такое шифрование считается пригодным только для закрывания паролей, коротких сигнальных сообщений и отдельных знаков.

Стойкость простой полиалфавитной подстановки (из подобных систем была рассмотрена подстановка по таблице Вижинера) оценивается значением 20n, где n - число различных алфавитов используемых для замены. При использовании таблицы Вижинера число различных алфавитов определяется числом букв в ключевом слове. Усложнение полиалфавитной подстановки существенно повышает ее стойкость.

Стойкость гаммирования однозначно определяется длинной периода гаммы. В настоящее время реальным становится использование бесконечной гаммы, при использовании которой теоретически стойкость зашифрованного текста также будет бесконечной.

Можно отметить, что для надежного закрытия больших массивов информации наиболее пригодны гаммирование и усложненные перестановки и подстановки.

При использовании комбинированных методов шифрования стойкость шифра равна произведению стойкостей отдельных методов. Поэтому комбинированное шифрование является наиболее надежным способом криптографического закрытия. Именно такой метод был положен в основу работы всех известных в настоящее время шифрующих аппаратов.

Алгоритм DES был утвержден еще долее 20 лет назад, однако за это время компьютеры сделали немыслимый скачок в скорости вычислений, и сейчас не так уж трудно сломать этот алгоритм путем полного перебора всех возможных вариантов ключей (а в DES используется всего 8-байтный),что недавно казалось совершенно невозможным.

ГОСТ 28147-89 был разработан еще спецслужбами Советского Союза, и он моложе DES всего на 10 лет; при разработке в него был заложен такой запас прочности, что данный ГОСТ является актуальным до сих пор.

Рассмотренные значения стойкости шифров являются потенциальными величинами. Они могут быть реализованы при строгом соблюдении правил использования криптографических средств защиты. Основными из этих првил являются: сохранение в тайне ключей, исключения дублирования(т.е. повторное шифрование одного и того же отрывка текста с использованием тех же ключей) и достаточно частая смена ключей.

Заключение

Итак, в этой работе был сделан обзор наиболее распространенных в настоящее время методов криптографической защиты информации и способов ее реализации. Выбор для конкретных систем должен быть основан на глубоком анализе слабых и сильных сторон тех или иных методов защиты. Обоснованный выбор той или иной системы защиты в общем-то должен опираться на какие-то критерии эффективности. К сожалению, до сих пор не разработаны подходящие методики оценки эффективности криптографических систем.

Наиболее простой критерий такой эффективности - вероятность раскрытия ключа или мощность множества ключей (М). По сути это то же самое, что и криптостойкость. Для ее численной оценки можно использовать также и сложность раскрытия шифра путем перебора всех ключей. Однако, этот критерий не учитывает других важных требований к криптосистемам:

· невозможность раскрытия или осмысленной модификации информации на основе анализа ее структуры,

· совершенство используемых протоколов защиты,

· минимальный объем используемой ключевой информации,

· минимальная сложность реализации (в количестве машинных операций), ее стоимость,

· высокая оперативность.

Поэтому желательно конечно использование некоторых интегральных показателей, учитывающих указанные факторы. Но в любом случае выбранный комплекс криптографических методов должен сочетать как удобство, гибкость и оперативность использования, так и надежную защиту от злоумышленников циркулирующей в системе информации.


Практическая часть:

Задание 1.

1) Заполняем поле X выполнив

1.1 Задаем вручную первое значение

1.2 Выполняем Правка->Заполнить->

2) Заполняем поле значений функции g =

Рис.1.1 – Формула функции g(x)

2.1) Просчитываем значения функций

3) Построение графиков

3.1) Выделяем ячейки с значениями Функций g

3.2) Выбираем мастер диаграмм

Рис.1.2 – Мастер диаграмм - График

Далее ->ряд

Рис.1.3 – Мастер диаграмм – подпись осей

Выделяем значение оси X

Нажимаем Ввод (enter)

3.3) Даем имена графикам

3.4) Выделяем ячейку с формулой графика

3.6) Выбираем закладку ->Линии сетки, выставляем

X промежуточные линии, Y Основные линии ->Далее

3.7) Помещаем график функции на имеющемся листе -> (Готово)

4) В итоге получаем (Рис.1.4)

Рис.1.4 – График функции g(x)

1.2.

1) Определяем в полях таблицы функции будущих графиков

Рис.1.5 – Подпись функций будущих графиков

2) Заполняем поле X выполнив:

2.1 Задаем вручную первое значение

2.2 Выполняем Правка->Заполнить->Прогрессия (по столбцам, арифметическая, шаг, предельное значение) при х [-2;2]

3) Просчитываем значения функций y=2sin( x) – 3cos( x), z = cos²(2 x) – 2sin( x).


Рис.1.6 – Формулы функций y(x) и z(x)

4) Построение графиков

4.1Выделяем ячейки с значениями Функций y и z

Выбираем мастер диаграмм

Рис.1.7 - Мастер диаграмм - График

Выделяем значение оси X

Нажимаем Ввод (enter)

4.2) Даем имена графикам

4.3) Выделяем ячейку с формулой графика

Нажимаем ввод (enter) , потом тоже самое проделываем со вторым рядом

4.5) Выбираем закладку ->Линии сетки, выставляем

X промежуточные линии, Y Основные линии ->Далее

4.6) Помещаем график функции на имеющемся листе -> (Готово)

5) В итоге получаем (Рис.1.8)

Рис.1.8 – Графики функций y(x) и z(x)

Задание 2.

· Создание списка «Отдела кадров»

Рис.2.1 Список «Отдела кадров»

· Сортировка

Рис.2.2 – Сортировка по полю Имя

В итоге получаем (Рис.2.3)

Рис.2.3 – Отсортированная таблица «Отдел кадров»

·
Поиск информации с помощью автофильтра (получить информацию о мужчинах, имя которых начинается на букву Буква, отчество – «Иванович», с окладом Оклад );

Рис.2.4 - Автофильтр

· Поиск информации с помощью расширенного фильтра (найти информацию из отдела Отдел1 в возрасте Возраст1 и Возраст2 , и о женщинах из отдела Отдел2 в возрасте Возраст3 );

1) Вводим критерии для расширенного фильтра 1

В итоге получаем (Рис.2.5)

Рис.2.5 – Расширенный фильтр 1

2) Вводим критерии для расширенного фильтра 2.

В итоге получаем(Рис.2.6)

Рис.2.6 – Расширенный фильтр 2

· Подведение итогов (определить количество и средний возраст сотрудников в каждом отделе);

Рис.2.7 - Итоги

Функция ДМИН- Возвращает наименьшее число в поле (столбце) записей списка или базы данных, которое удовлетворяет заданным условиям.

Рис.2.8 – Анализ списка с помощью функции ДМИН

Задание 3.

Создаём две связанные таблицы Сессия (рис.3.2) и Студенты (рис.3.4)

Рис.3.1- Конструктор таблицы Сессия

Рис.3.2- Таблица Сессия

Рис.3.3 – Конструктор таблицы Студенты


Рис.3.4 – Таблица Студенты

1) Используя таблицу Студенты, создать три запроса, по которым из базы данных будут поочередно отобраны фамилии и имена студентов групп 1-Э-1, 1-Э-2, 1-Э-3.

Рис.3.5– Конструктор Запроса 1.1


Рис.3.7– Конструктор Запроса1.2

Рис.3.9– Конструктор Запроса 1.3

2) Используя таблицу Студенты, создать два запроса, по которым из базы данных будут поочередно отобраны фамилии и имена женщин, а затем фамилии и имена мужчин.

Рис.3.11– Конструктор Запроса 2.1

Рис.3.13 – Конструктор Запроса 2.2

3)Использую таблицу Студенты, создать два запроса, по которым из базы данных будут поочередно отобраны фамилии и имена женщин группы 1-Э-2, а затем-мужчин группы 1-Э-1.

Рис.3.15– Конструктор Запроса 3.1

Рис.3.17– Конструктор – 3.2

4) Используя связанные таблицы Студенты и Сессия, создать запрос, по которому из базы данных будут отобраны фамилии, имена, номера зачёток и оценки по математике студентов группы 1-Э-2.

Рис.3.19– Конструктор Запроса 5

5) Используя связанные таблицы Студенты и Сессия, создать запрос, по которому из базы данных будут отобраны фамилии, имена, номера зачёток и оценки по философии студентов (мужчин) группы 1-Э-2.

Рис.3.21– Конструктор Запроса 8

6) Используя связанные таблицы Студенты и Сессия, создать запрос, по которому из базы данных будут отобраны фамилии, имена, номера зачёток студентов, получивших оценку «удовлетворительно» (3) по философии.

Рис.3.23– Конструктор Запроса 10

7) Используя связанные таблицы Студенты и Сессия, создать запрос, по которому из базы данных будут отобраны фамилии, имена, номера зачёток студентов, получивших оценку «хорошо» (4) одновременно по двум предмета: философии и математике.

Рис.3.25– Конструктор Запроса 14

8) Используя связанные таблицы Студенты и Сессия, создать запрос, по которому из базы данных будут отобраны фамилии, имена, номера зачёток студентов, получивших оценку «неудовлетворительно» (2) по одному из двух предметов: по математике или информатике.

Рис.3.27– Конструктор Запроса 18

9) Используя связанные таблицы Студенты и Сессия, создать запрос, по которому из базы данных будут отобраны фамилии, имена, номера зачёток студентов, получивших оценку «хорошо» (4) по всем предметам.

Рис.3.29– Конструктор Запроса 22

10) Используя таблицу Сессия, создать запрос с именем Средний балл для расчёта среднего балла каждого студента по результатам сдачи четырёх экзаменов. Запрос обязательно должен содержать поле Зачётка , которое впоследствии будет использовано для связывания нескольких таблиц.

Рис.3.31 – Конструктор таблицы Сессия

11) Используя связанные таблицы Студенты , Сессия и запрос Средний балл , создать запрос, по которому из базы данных будут отобраны фамилии, имена, номера зачёток, номера групп студентов, имеющих средний балл 3,25.

Рис.3.33 – Конструктор Запроса 25

12) Используя связанные таблицы Студенты , Сессия и запрос Средний балл , создать запрос, по которому из базы данных будут отобраны оценка по математике, средний балл и номер группы студента Иванова.

Рис.3.35– Конструктор Запроса 29

13) Используя связанные таблицы Студенты , Сессия и запрос Средний балл , создать запрос, по которому из базы данных будут отобраны фамилии, имена студентов имеющих средний балл менее 3,75.

Рис.3.37– Конструктор Запроса 33

14) Используя таблицу Студенты , определить фамилию, имя и номер зачетки студентки, если известно, что её отчество Викторовна.

Рис.3.39– Конструктор Запроса 35

Задание 4.

Для перевода числа из десятичной системы счисления в систему счисления с другим основанием поступают следующим образом:

а) Для перевода целой части числа его делят нацело на основание системы, фиксируя остаток. Если неполное частное не равно нулю продолжают делить его нацело. Если равно нулю остатки записываются в обратном порядке.

б) Для перевода дробной части числа ее умножают на основание системы счисления, фиксируя при этом целые части полученных произведений. Целые части в дальнейшем умножении не участвуют. Умножение производиться до получения 0 в дробной части произведения или до заданной точности вычисления.

в) Ответ записывают в виде сложения переведенной целой и переведенной дробной части числа.

49812,22₁₀ = 1100001010010100,001₂ 49812,22₁₀ = 141224,160₈

0,
0,

49812,22₁₀ = С294, 385₁₆

0,

Задание 5.

Для перевода числа в десятичную систему счисления из системы счисления с другим основанием каждый коэффициент переводимого числа умножается на основание системы в степени соответствующей этому коэффициенту и полученные результаты складываются.

А) 10101001,11001₂ = 1*2^7+1*2^5+1*2^3+1*2^0+1*2^(-1)+1*2^(-2)+1*2(-5)= 169,78125₁₀

Для перевода из двоичной системы счисления в восьмеричную необходимо разбить данное двоичное число вправо и влево от запятой на триада (три цифры) и представить каждую триаду соответствующим восьмеричным кодом. При невозможности разбиения на триады допускается добавление нулей слева в целой записи числа и справа в дробной части числа. Для обратного перевода каждую цифру восьмеричного числа представляют соответствующей триадой двоичного кода.

Таблица 5.1 – Перевод чисел

Десятичная система счисления Двоичная система счисления Восьмеричная система счисления Шестнадцатеричная система счисления
Триады (0-7) Тетрады (0-15)
A
B
C
D
E
F

Б) 674,7₈ = 110111100,111₂=1*2^2+1*2^3+1*2^4+1*2^5+1*2^7+1*2^8+1*2^(-1) +1*2^(-2) +1*2^(-3)= 443,875₁₀

110 111 100. 111₂

В) EDF,51₁₆ = 111011011111,01010001₂=1*2^0+1*2^1+1*2^2+1*2^3+1*2^4+1*2^6+ +1*2^7+1*2^9+ +1*2^10+1*2^11+1*2^(-2) 1*2^(-4) 1*2^(-8)= 3807,31640625₁₀

1110 1101 1111 . 0101 0001₂

Задание 6.

В основе сложения чисел в двоичной системе лежит таблица сложения одноразрядных двоичных чисел.

0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 10
Сложение многоразрядных двоичных чисел осуществляется в соответствии с этой таблицей с учетом возможных переносов из младшего разряда в старшие. В восьмеричной системе счисления, как и в любой другой позиционной, действуют собственные правила сложения чисел, представляющиеся правилами сложения цифр с равными порядками, относящихся к двум складываемым числам. Эти правила видны из табл.6.1. Появляющийся при сложении некоторых цифр данного разряда перенос, показан символом "↶".
Таблица 6.1 - Сложение в 8–ой системе счисления
+
↶0
↶0 ↶1
↶0 ↶1 ↶2
↶0 ↶1 ↶2 ↶3
↶0 ↶1 ↶2 ↶3 ↶4
↶0 ↶1 ↶2 ↶3 ↶4 ↶5
↶0 ↶1 ↶2 ↶3 ↶4 ↶5 ↶6

Правила сложения цифр двух шестнадцатеричных чисел, находящихся в одинаковых разрядах этих чисел, можно видеть из табл.6.2. Имеющий место при сложении некоторых цифр данного разряда перенос показан символом "↶".

6 8 5 , 3 2 2 A ₁₆ + 1 0 1 0 1 0 0 1 0 , 1 0 ₂ + 4 7 7 , 6₈

D A 4 8 5 , 4 4 6 0 ₁₆ 1 1 0 0 0 0 1 1 0 , 1 1 0 1 0₂6 5 1 , 5 6₈

D A B 0 A , 7 6 8 A₁₆ 1 0 1 1 0 1 1 0 0 1 , 0 1 0 1 0₂ 1 3 5 1 ,3 6₈

Таблица 6.2 - Сложение в 16-ой системе счисления

+ A B C D E F
A B C D E F
A B C D E F ↶0
A B C D E F ↶0 ↶1
A B C D E F ↶0 ↶1 ↶2
A B C D E F ↶0 ↶1 ↶2 ↶3
A B C D E F ↶0 ↶1 ↶2 ↶3 ↶4
A B C D E F ↶0 ↶1 ↶2 ↶3 ↶4 ↶5
A B C D E F ↶0 ↶1 ↶2 ↶3 ↶4 ↶5 ↶6
A B C D E F ↶0 ↶1 ↶2 ↶3 ↶4 ↶5 ↶6 ↶7
A B C D E F ↶0 ↶1 ↶2 ↶3 ↶4 ↶5 ↶6 ↶7 ↶8
A A B C D E F ↶0 ↶1 ↶2 ↶3 ↶4 ↶5 ↶6 ↶7 ↶8 ↶9
B B C D E F ↶0 ↶1 ↶2 ↶3 ↶4 ↶5 ↶6 ↶7 ↶8 ↶9 ↶A
C C D E F ↶0 ↶1 ↶2 ↶3 ↶4 ↶5 ↶6 ↶7 ↶8 ↶9 ↶A ↶B
D D E F ↶0 ↶1 ↶2 ↶3 ↶4 ↶5 ↶6 ↶7 ↶8 ↶9 ↶A ↶B ↶C
E E F ↶0 ↶1 ↶2 ↶3 ↶4 ↶5 ↶6 ↶7 ↶8 ↶9 ↶A ↶B ↶C ↶D
F F ↶0 ↶1 ↶2 ↶3 ↶4 ↶5 ↶6 ↶7 ↶8 ↶9 ↶A ↶B ↶C ↶D ↶E

Задание 7.

Используя таблицу сложения восьмеричных чисел, можно выполнять их вычитание. Пусть требуется вычислить разность двух восьмеричных чисел. Найдём в первом столбце табл. 6.1 цифру, соответствующую последней в вычитаемом, и в её строке отыщем последнюю цифру уменьшаемого - она расположена на пересечении строки вычитаемого и столбца разности. Так мы найдём последнюю цифру разности. Аналогично ищется каждая цифра разности.

а) _ 2 5 1 5 1 4 , 4 0₈

5 4 2 5 , 5 5

2 4 3 0 6 6 , 6 3₈

б) _1 0 1 1 0 1 1 0 0 0 , 1 0 0 0 0₂

1 0 1 0 0 1 0 0 1 , 1 0 0 1 1

1 0 1 1 0 0 1 0 0 1 1 , 0 0 0 0 1₂

в) _E 3 1 6 , 2 5 0₁₆

5 8 8 1 , F D C₁₆

8 А 9 4 , 2 7 4

Задание 8.

В основе умножения чисел в двоичной системе лежит таблица умножения одноразрядных двоичных чисел.

0 · 0 = 0
0 · 1 = 0
1 · 0 = 0
1 · 1 = 1

Умножение многоразрядных двоичных чисел осуществляется в
соответствии с этой таблицей по обычной схеме,
которую вы применяете в десятичной системе.

Собственная таблица умножения, как у нас уже была возможность убедиться, имеется в каждой позиционной системе счисления. В двоичной она самая маленькая, в восьмеричной (табл.8.1) и десятичной уже более обширная. Среди часто используемых систем счисления из рассмотренных нами самой крупной таблицей умножения располагает шестнадцатеричная (табл. 8.2).

Табл. 8.1. – Умножение в 8-ой системе

×

а) 1 0 1 0 0 1₂

* 1 1 1 0 1 1

1 0 1 0 0 1 .

1 0 0 1 0 1 1 1 0 0 1 1₂

б) 1 0 1 1 1 0 0₂

* 1 1 0 1 1

1 0 1 1 1 0 0 .

1 0 0 1 1 0 1 1 0 1 0 0₂

в) B C D , 5₁₆

* D5A ₁₆

9 D 9 3 3 E 2₁₆


Табл.8.2 – Умножение в 16-ой системе

× A B C D E F
A B C D E F
A C E 1A 1C 1E
C F 1B 1E 2A 2D
C 1C 2C 3C
A F 1E 2D 3C 4B
C 1E 2A 3C 4E 5A
E 1C 2A 3F 4D 5B
1B 2D 3F 5A 6C 7E
A A 1E 3C 5A 6E 8C
B B 2C 4D 6E 8F 9A A5
C C 3C 6C 9C A8 B4
D D 1A 4E 5B 8F 9C A9 B6 C3
E E 1C 2A 7E 8C 9A A8 B6 C4 D2
F F 1E 2D 3C 4B 5A A5 B4 C3 D2 E1

Задание 9.

Прямой код - способ представления двоичных чисел с фиксированной запятой в компьютерной арифметике. При записи числа в прямом коде старший разряд является знаковым разрядом . Если его значение равно 0 - то число положительное, если 1 - то отрицательное.

Обратный код - метод вычислительной математики, позволяющий вычесть одно число из другого, используя только операцию сложения над натуральными числами. При записи числа для положительного числа совпадает с прямым кодом, а для отрицательного числа все цифры заменяются на противоположные, кроме разрядного.

Дополнительный код (англ. two’s complement , иногда twos-complement ) - наиболее распространённый способ представления отрицательных целых чисел в компьютерах. Он позволяет заменить операцию вычитания на операцию сложения и сделать операции сложения и вычитания одинаковыми для знаковых и беззнаковых чисел, чем упрощает архитектуру ЭВМ. При записи числа для положительного числа совпадает с прямым кодом, а для отрицательного числа дополнительный код обуславливается получением обратного кода и добавлением 1.

Сложение чисел в дополнительном коде возникающая 1 переноса в знаковом разряде отбрасывается, а в обратном коде прибавляется к младшему разряду суммы кодов.

Если результат арифметических действий является кодом отрицательного числа необходимо преобразовать в прямой код. Обратный код преобразовать в прямой заменой цифр во всех разрядах кроме знакового на противоположных. Дополнительный код преобразовывается в прямой прибавлением 1.

Прямой код:

X=0,10111 1,11110

Y=1,11110 0,10111

Обратный код:

X=0,10111 0,10111

Y=1,00001 1,00001

1,11000 1,00111

Дополнительный код:

X=0,10111 0,10111

Y=1,00010 1,00010

1,11001 1,00110

Прямой код:

Обратный код:

X=0,110110 0,0110110

Y=0,101110 0,0101110

Дополнительный код:

X=0,110110 0,0110110

Y=0,101110 0,0101110

Задание 10.

Логические элементы

1. Логический элемент НЕ выполняет логическое отрицание. Он имеет один вход и один выход. Отсутствие сигнала (напряжения) обозначим через «0», а наличие сигнала через «1». Сигнал на выходе всегда противоположен входному сигналу. Это видно из таблицы истинности, которая показывает зависимость выходного сигнала от входного.

2. Логический элемент ИЛИ выполняет логическое сложение. Он имеет несколько входов и один выход. Сигнал на выходе будет, если есть сигнал хотя бы на одном входе.

Условное обозначение Таблица истинности

3. Логический элемент И выполняет логическое умножение. Сигнал на выходе этого логического элемента будет только в том случае, если есть сигнал на всех входах.

Условное обозначение Таблица истинности

F=(A v B) ʌ (C v D)

Таблица 10.1 – Таблица истинности

A B C D A B C D (A v B) (C vD) F=(A v B) ʌ (C v D)

AВ алгебре логики имеется ряд законов, позволяющих производить равносильные преобразования логических выражений. Приведем соотношения, отражающие эти законы.

1. Закон двойного отрицания: (А) = А

Двойное отрицание исключает отрицание.

2. Переместительный (коммутативный) закон:

Для логического сложения: A V B = B V A

Для логического умножения: A&B = B&A

Результат операции над высказываниями не зависит от того, в каком порядке берутся эти высказывания.

3. Сочетательный (ассоциативный) закон:

Для логического сложения: (A v B) v C = A v (Bv C);

Для логического умножения: (A&B)&C = A&(B&C).

При одинаковых знаках скобки можно ставить произвольно или вообще опускать.

4. Распределительный (дистрибутивный) закон:

Для логического сложения: (A v B)&C = (A&C)v(B&C);

Для логического умножения: (A&B) v C = (A v C)&(B v C).

Определяет правило выноса общего высказывания за скобку.

5. Закон общей инверсии (законы де Моргана):

Для логического сложения: (Av B) = A & B;

Для логического умножения: (A& B) = A v B;

6. Закон идемпотентности

Для логического сложения: A v A = A;

Для логического умножения: A&A = A.

Закон означает отсутствие показателей степени.

7. Законы исключения констант:

Для логического сложения: A v 1 = 1, A v 0 = A;

Для логического умножения: A&1 = A, A&0 = 0.

8. Закон противоречия: A& A = 0.

Невозможно, чтобы противоречащие высказывания были одновременно истинными.

9. Закон исключения третьего: A v A = 1.

10. Закон поглощения:

Для логического сложения: A v (A&B) = A;

Для логического умножения: A&(A v B) = A.

11. Закон исключения (склеивания):

Для логического сложения: (A&B) v (A &B) = B;

Для логического умножения: (A v B)&(A v B) = B.

12. Закон контрапозиции (правило перевертывания):

(A v B) = (Bv A).

(А→В) = А&В

А&(АvВ)= А&В

Формула имеет нормальную форму, если в ней отсутствуют знаки эквивалентности, импликации, двойного от­рицания, при этом знаки отрицания находятся только при переменных.


Похожая информация.


Шифрование данных чрезвычайно важно для защиты конфиденциальности. В этой статье я расскажу о различных типах и методах шифрования, которые используются для защиты данных сегодня.

Знаете ли вы?
Еще во времена Римской империи, шифрование использовалось Юлием Цезарем для того, чтобы сделать письма и сообщения нечитаемыми для врага. Это играло важную роль как военная тактика, особенно во время войн.

Так как возможности Интернета продолжают расти, все больше и больше наших предприятий проводятся на работу онлайн. Среди этого наиболее важными являются, интернет банк, онлайн оплата, электронные письма, обмен частными и служебными сообщениями и др., которые предусматривают обмен конфиденциальными данными и информацией. Если эти данные попадут в чужие руки, это может нанести вред не только отдельному пользователю, но и всей онлайн системе бизнеса.

Чтобы этого не происходило, были приняты некоторые сетевые меры безопасности для защиты передачи личных данных. Главными среди них являются процессы шифрования и дешифрования данных, которые известны как криптография. Существуют три основные методы шифрования, используемых в большинстве систем сегодня: хеширование, симметричное и асимметричное шифрование. В следующих строках, я расскажу о каждом из этих типов шифрования более подробно.

Типы шифрования

Симметричное шифрование

При симметричном шифровании, нормальные читабельные данные, известные как обычный текст, кодируется (шифруется), так, что он становится нечитаемым. Это скремблирование данных производится с помощью ключа. Как только данные будут зашифрованы, их можно безопасно передавать на ресивер. У получателя, зашифрованные данные декодируются с помощью того же ключа, который использовался для кодирования.

Таким образом ясно что ключ является наиболее важной частью симметричного шифрования. Он должен быть скрыт от посторонних, так как каждый у кого есть к нему доступ сможет расшифровать приватные данные. Вот почему этот тип шифрования также известен как "секретный ключ".

В современных системах, ключ обычно представляет собой строку данных, которые получены из надежного пароля, или из совершенно случайного источника. Он подается в симметричное шифрование программного обеспечения, которое использует его, чтобы засекретить входные данные. Скремблирование данных достигается с помощью симметричного алгоритма шифрования, такие как Стандарт шифрования данных (DES), расширенный стандарт шифрования (AES), или международный алгоритм шифрования данных (IDEA).

Ограничения

Самым слабым звеном в этом типе шифрования является безопасность ключа, как в плане хранения, так и при передаче аутентифицированного пользователя. Если хакер способен достать этот ключ, он может легко расшифровать зашифрованные данные, уничтожая весь смысл шифрования.

Еще один недостаток объясняется тем, что программное обеспечение, которое обрабатывает данные не может работать с зашифрованными данными. Следовательно, для возможности использовать этого программного обеспечение, данные сначала должны быть декодированы. Если само программное обеспечение скомпрометировано, то злоумышленник сможет легко получить данные.

Асимметричное шифрование

Асимметричный ключ шифрования работает аналогично симметричному ключу, в том, что он использует ключ для кодирования передаваемых сообщений. Однако, вместо того, чтобы использовать тот же ключ, для расшифровки этого сообщения он использует совершенно другой.

Ключ, используемый для кодирования доступен любому и всем пользователям сети. Как таковой он известен как «общественный» ключ. С другой стороны, ключ, используемый для расшифровки, хранится в тайне, и предназначен для использования в частном порядке самим пользователем. Следовательно, он известен как «частный» ключ. Асимметричное шифрование также известно, как шифрование с открытым ключом.

Поскольку, при таком способе, секретный ключ, необходимый для расшифровки сообщения не должен передаваться каждый раз, и он обычно известен только пользователю (приемнику), вероятность того, что хакер сможет расшифровать сообщение значительно ниже.

Diffie-Hellman и RSA являются примерами алгоритмов, использующих шифрование с открытым ключом.

Ограничения

Многие хакеры используют «человека в середине» как форму атаки, чтобы обойти этот тип шифрования. В асимметричном шифровании, вам выдается открытый ключ, который используется для безопасного обмена данными с другим человеком или услугой. Однако, хакеры используют сети обман, чтобы заставить вас общаться с ними, в то время как вас заставили поверить, что вы находитесь на безопасной линии.

Чтобы лучше понять этот тип взлома, рассмотрим две взаимодействующие стороны Сашу и Наташу, и хакера Сергея с умыслом на перехват их разговора. Во-первых, Саша отправляет сообщение по сети, предназначенное для Наташи, прося ее открытый ключ. Сергей перехватывает это сообщение и получает открытый ключ, связанный с ней, и использует его для шифрования и передачи ложного сообщения, Наташе, содержащего его открытый ключ вместо Сашиного.

Наташа, думая, что это сообщение пришло от Саши, теперь шифрует ее с помощью открытого ключа Сергея, и отправляет его обратно. Это сообщение снова перехватил Сергей, расшифровал, изменил (при желании), зашифровал еще раз с помощью открытого ключа, который Саша первоначально отправил, и отправил обратно к Саше.

Таким образом, когда Саша получает это сообщение, его заставили поверить, что оно пришло от Наташи, и продолжает не подозревать о нечестной игре.

Хеширование

Методика хеширования использует алгоритм, известный как хэш-функция для генерации специальной строки из приведенных данных, известных как хэш. Этот хэш имеет следующие свойства:

  • одни и те же данные всегда производит тот же самый хэш.
  • невозможно, генерировать исходные данные из хэша в одиночку.
  • Нецелесообразно пробовать разные комбинации входных данных, чтобы попытаться генерировать тот же самый хэш.

Таким образом, основное различие между хэшированием и двумя другими формами шифрования данных заключается в том, что, как только данные зашифрованы (хешированы), они не могут быть получены обратно в первозданном виде (расшифрованы). Этот факт гарантирует, что даже если хакер получает на руки хэш, это будет бесполезно для него, так как он не сможет расшифровать содержимое сообщения.

Message Digest 5 (MD5) и Secure Hashing Algorithm (SHA) являются двумя широко используемыми алгоритмами хеширования.

Ограничения

Как уже упоминалось ранее, почти невозможно расшифровать данные из заданного хеша. Впрочем, это справедливо, только если реализовано сильное хэширование. В случае слабой реализации техники хеширования, используя достаточное количество ресурсов и атаки грубой силой, настойчивый хакер может найти данные, которые совпадают с хэшем.

Сочетание методов шифрования

Как обсуждалось выше, каждый из этих трех методов шифрования страдает от некоторых недостатков. Однако, когда используется сочетание этих методов, они образуют надежную и высоко эффективную систему шифрования.

Чаще всего, методики секретного и открытого ключа комбинируются и используются вместе. Метод секретного ключа дает возможность быстрой расшифровки, в то время как метод открытого ключа предлагает более безопасный и более удобный способ для передачи секретного ключа. Эта комбинация методов известна как "цифровой конверт". Программа шифрования электронной почты PGP основана на технике "цифровой конверт".

Хеширования находит применение как средство проверки надежности пароля. Если система хранит хэш пароля, вместо самого пароля, он будет более безопасным, так как даже если хакеру попадет в руки этот хеш, он не сможет понять (прочитать) его. В ходе проверки, система проверит хэш входящего пароля, и увидит, если результат совпадает с тем, что хранится. Таким образом, фактический пароль будет виден только в краткие моменты, когда он должен быть изменен или проверен, что позволит существенно снизить вероятность его попадания в чужие руки.

Хеширование также используется для проверки подлинности данных с помощью секретного ключа. Хэш генерируется с использованием данных и этого ключа. Следовательно, видны только данные и хэш, а сам ключ не передается. Таким образом, если изменения будут сделаны либо с данными, либо с хэшем, они будут легко обнаружены.

В заключение можно сказать, что эти методы могут быть использованы для эффективного кодирования данных в нечитаемый формат, который может гарантировать, что они останутся безопасными. Большинство современных систем обычно используют комбинацию этих методов шифрования наряду с сильной реализацией алгоритмов для повышения безопасности. В дополнение к безопасности, эти системы также предоставляют множество дополнительных преимуществ, таких как проверка удостоверения пользователя, и обеспечение того, что полученные данные не могут быть подделаны.


Шифрование является наиболее широко используемым криптографическим методом сохранения конфиденциальности информации, он защищает данные от несанкционированного ознакомления с ними. Для начала рассмотрим основные методы криптографической защиты информации. Словом, криптография - наука о защите информации с использованием математических методов. Существует и наука, противоположная криптографии и посвященная методам вскрытия защищенной информации - криптоанализ . Совокупность криптографии и криптоанализа принято называть криптологией . Криптографические методы могут быть классифицированы различным образом, но наиболее часто они подразделяются в зависимости от количества ключей, используемых в соответствующих криптоалгоритмах (см. рис. 1):

  1. Бесключевые, в которых не используются какие-либо ключи.
  2. Одноключевые - в них используется некий дополнительный ключевой параметр - обычно это секретный ключ.
  3. Двухключевые, использующие в своих вычислениях два ключа: секретный и открытый.

Рис. 1. Криптоалгоритмы

Обзор криптографических методов

Шифрование является основным методом защиты; рассмотрим его подробно далее.

Стоит сказать несколько слов и об остальных криптографических методах:

  1. Электронная подпись используется для подтверждения целостности и авторства данных. Целостность данных означает, что данные не были случайно или преднамеренно изменены при их хранении или передаче.
    Алгоритмы электронной подписи используют два вида ключей:
    • секретный ключ используется для вычисления электронной подписи;
    • открытый ключ используется для ее проверки.
    При использовании криптографически сильного алгоритма электронной подписи и при грамотном хранении и использовании секретного ключа (то есть при невозможности использования ключа никем, кроме его владельца) никто другой не в состоянии вычислить верную электронную подпись какого-либо электронного документа.
  2. Аутентификация позволяет проверить, что пользователь (или удаленный компьютер) действительно является тем, за кого он себя выдает. Простейшей схемой аутентификации является парольная - в качестве секретного элемента в ней используется пароль, который предъявляется пользователем при его проверке. Такая схема доказано является слабой, если для ее усиления не применяются специальные административно-технические меры. А на основе шифрования или хэширования (см. ниже) можно построить действительно сильные схемы аутентификации пользователей.
  3. Существуют различные методы криптографического контрольного суммирования:
    • ключевое и бесключевое хэширование;
    • вычисление имитоприставок;
    • использование кодов аутентификации сообщений.
    Фактически, все эти методы различным образом из данных произвольного размера с использованием секретного ключа или без него вычисляют некую контрольную сумму фиксированного размера, однозначно соответствующую исходным данным.
    Такое криптографическое контрольное суммирование широко используется в различных методах защиты информации, например:
    • для подтверждения целостности любых данных в тех случаях, когда использование электронной подписи невозможно (например, из-за большой ресурсоемкости) или является избыточным;
    • в самих схемах электронной подписи - "подписывается" обычно хэш данных, а не все данные целиком;
    • в различных схемах аутентификации пользователей.
  4. Генераторы случайных и псевдослучайных чисел позволяют создавать последовательности случайных чисел, которые широко используются в криптографии, в частности:
    • случайные числа необходимы для генерации секретных ключей, которые, в идеале, должны быть абсолютно случайными;
    • случайные числа применяются во многих алгоритмах электронной подписи;
    • случайные числа используются во многих схемах аутентификации.
    Не всегда возможно получение абсолютно случайных чисел - для этого необходимо наличие качественных аппаратных генераторов. Однако, на основе алгоритмов симметричного шифрования можно построить качественные генераторы псевдослучайных чисел.
Шифрование

Шифрование информации - это преобразование открытой информации в зашифрованную (которая чаще всего называется шифртекстом или криптограммой ), и наоборот. Первая часть этого процесса называется зашифрованием , вторая - расшифрованием .

Можно представить зашифрование в виде следующей формулы:

С = E k1 (M),

где:
M (message) - открытая информация,
С (cipher text) - полученный в результате зашифрования шифртекст,
E (encryption) - функция зашифрования, выполняющая криптографические преобразования над M ,
k1 (key) - параметр функции E , называемый ключом зашифрования.

В стандарте ГОСТ 28147-89 (стандарт определяет отечественный алгоритм симметричного шифрования) понятие ключ определено следующим образом: "Конкретное секретное состояние некоторых параметров алгоритма криптографического преобразования, обеспечивающее выбор одного преобразования из совокупности всевозможных для данного алгоритма преобразований".

Ключ может принадлежать определенному пользователю или группе пользователей и являться для них уникальным. Зашифрованная с использованием конкретного ключа информация может быть расшифрована только с использованием только этого же ключа или ключа, связанного с ним определенным соотношением.

Аналогичным образом можно представить и расшифрование:

M" = D k2 (C),

где:
M" - сообщение, полученное в результате расшифрования,
D (decryption) - функция расшифрования; так же, как и функция зашифрования, выполняет криптографические преобразования над шифртекстом,
k2 - ключ расшифрования.

Для получения в результате расшифрования корректного открытого текста (то есть того самого, который был ранее зашифрован: M" = M), необходимо одновременное выполнение следующих условий:

  1. Функция расшифрования должна соответствовать функции зашифрования.
  2. Ключ расшифрования должен соответствовать ключу зашифрования.

При отсутствии верного ключа k2 получить исходное сообщение M" = M с помощью правильной функции D невозможно. Под словом "невозможно" в данном случае обычно понимается невозможность вычисления за реальное время при существующих вычислительных ресурсах.

Алгоритмы шифрования можно разделить на две категории (см. рис. 1):

  1. Алгоритмы симметричного шифрования.
  2. Алгоритмы асимметричного шифрования.

В алгоритмах симметричного шифрования для расшифрования обычно используется тот же самый ключ, что и для зашифрования, или ключ, связанный с ним каким-либо простым соотношением. Последнее встречается существенно реже, особенно в современных алгоритмах шифрования. Такой ключ (общий для зашифрования и расшифрования) обычно называется просто ключом шифрования .

В асимметричном шифровании ключ зашифрования k1 легко вычисляется из ключа k2 таким образом, что обратное вычисление невозможно. Например, соотношение ключей может быть таким:

k1 = a k2 mod p,

где a и p - параметры алгоритма шифрования, имеющие достаточно большую размерность.

Такое соотношение ключей используется и в алгоритмах электронной подписи.

Основной характеристикой алгоритма шифрования является криптостойкость , которая определяет его стойкость к раскрытию методами криптоанализа. Обычно эта характеристика определяется интервалом времени, необходимым для раскрытия шифра.

Симметричное шифрование менее удобно из-за того, что при передаче зашифрованной информации кому-либо необходимо, чтобы адресат заранее получил ключ для расшифрования информации. У асимметричного шифрования такой проблемы нет (поскольку открытый ключ можно свободно передавать по сети), однако, есть свои проблемы, в частности, проблема подмены открытого ключа и медленная скорость шифрования. Наиболее часто асимметричное шифрование используется в паре с симметричным - для передачи ключа симметричного шифрования, на котором шифруется основной объем данных. Впрочем, схемы хранения и передачи ключей - это тема отдельной статьи. Здесь же позволю себе утверждать, что симметричное шифрование используется гораздо чаще асимметричного, поэтому остальная часть статьи будет посвящена только симметричному шифрованию.

Симметричное шифрование бывает двух видов:

  • Блочное шифрование - информация разбивается на блоки фиксированной длины (например, 64 или 128 бит), после чего эти блоки поочередно шифруются. Причем, в различных алгоритмах шифрования или даже в разных режимах работы одного и того же алгоритма блоки могут шифроваться независимо друг от друга или "со сцеплением" - когда результат зашифрования текущего блока данных зависит от значения предыдущего блока или от результата зашифрования предыдущего блока.
  • Поточное шифрование - необходимо, прежде всего, в тех случаях, когда информацию невозможно разбить на блоки - скажем, некий поток данных, каждый символ которых должен быть зашифрован и отправлен куда-либо, не дожидаясь остальных данных, достаточных для формирования блока. Поэтому алгоритмы поточного шифрования шифруют данные побитно или посимвольно. Хотя стоит сказать, что некоторые классификации не разделяют блочное и поточное шифрование, считая, что поточное шифрование - это шифрование блоков единичной длины.

Рассмотрим, как выглядят изнутри алгоритмы блочного симметричного шифрования.Структура алгоритмов шифрования

Подавляющее большинство современных алгоритмов шифрования работают весьма схожим образом: над шифруемым текстом выполняется некое преобразование с участием ключа шифрования, которое повторяется определенное число раз (раундов). При этом, по виду повторяющегося преобразования алгоритмы шифрования принято делить на несколько категорий. Здесь также существуют различные классификации, приведу одну из них. Итак, по своей структуре алгоритмы шифрования классифицируются следующим образом:

  1. Алгоритмы на основе сети Фейстеля.

    Сеть Фейстеля подразумевает разбиение обрабатываемого блока данных на несколько субблоков (чаще всего - на два), один из которых обрабатывается некоей функцией f() и накладывается на один или несколько остальных субблоков. На рис. 2 приведена наиболее часто встречающаяся структура алгоритмов на основе сети Фейстеля.

    Рис. 2. Структура алгоритмов на основе сети Фейстеля.

    Дополнительный аргумент функции f() , обозначенный на рис. 2 как Ki , называется ключом раунда . Ключ раунда является результатом обработки ключа шифрования процедурой расширения ключа, задача которой - получение необходимого количества ключей Ki из исходного ключа шифрования относительно небольшого размера (в настоящее время достаточным для ключа симметричного шифрования считается размер 128 бит). В простейших случаях процедура расширения ключа просто разбивает ключ на несколько фрагментов, которые поочередно используются в раундах шифрования; существенно чаще процедура расширения ключа является достаточно сложной, а ключи Ki зависят от значений большинства бит исходного ключа шифрования.

    Наложение обработанного субблока на необработанный чаще всего выполняется с помощью логической операции "исключающее или" - XOR (как показано на рис. 2). Достаточно часто вместо XOR здесь используется сложение по модулю 2 n , где n - размер субблока в битах. После наложения субблоки меняются местами, то есть в следующем раунде алгоритма обрабатывается уже другой субблок данных.

    Такая структура алгоритмов шифрования получила свое название по имени Хорста Фейстеля (Horst Feistel) - одного из разработчиков алгоритма шифрования Lucifer и разработанного на его основе алгоритма DES (Data Encryption Standard) - бывшего (но до сих пор широко используемого) стандарта шифрования США. Оба этих алгоритма имеют структуру, аналогичную показанной на рис. 2. Среди других алгоритмов, основанных на сети Фейстеля, можно привести в пример отечественный стандарт шифрования ГОСТ 28147-89, а также другие весьма известные алгоритмы: RC5, Blowfish, TEA, CAST-128 и т.д.

    На сети Фейстеля основано большинство современных алгоритмов шифрования - благодаря множеству преимуществ подобной структуры, среди которых стоит отметить следующие:

    • Алгоритмы на основе сети Фейстеля могут быть сконструированы таким образом, что для зашифрования и расшифрования могут использоваться один и тот же код алгоритма - разница между этими операциями может состоять лишь в порядке применения ключей Ki; такое свойство алгоритма наиболее полезно при его аппаратной реализации или на платформах с ограниченными ресурсами; в качестве примера такого алгоритма можно привести ГОСТ 28147-89.
  2. Алгоритмы на основе сети Фейстеля являются наиболее изученными - таким алгоритмам посвящено огромное количество криптоаналитических исследований, что является несомненным преимуществом как при разработке алгоритма, так и при его анализе.

    Существует и более сложная структура сети Фейстеля, пример которой приведен на рис. 3.

    Рис. 3. Структура сети Фейстеля.

    Такая структура называется обобщенной или расширенной сетью Фейстеля и используется существенно реже традиционной сети Фейстеля. Примером такой сети Фейстеля может служить алгоритм RC6.

  3. Алгоритмы на основе подстановочно-перестановочных сетей (SP-сеть - Substitution-permutation network).

    В отличие от сети Фейстеля, SP-сети обрабатывают за один раунд целиком шифруемый блок. Обработка данных сводится, в основном, к заменам (когда, например, фрагмент входного значения заменяется другим фрагментом в соответствии с таблицей замен, которая может зависеть от значения ключа Ki ) и перестановкам, зависящим от ключа Ki (упрощенная схема показана на рис. 4).

    Рис. 4. Подстановочно-перестановочная сеть.

    Впрочем, такие операции характерны и для других видов алгоритмов шифрования, поэтому, на мой взгляд, название "подстановочно-перестановочная сеть" является достаточно условным.

    SP-сети распространены существенно реже, чем сети Фейстеля; в качестве примера SP-сетей можно привести алгоритмы Serpent или SAFER+.

  4. Алгоритмы со структурой "квадрат" (Square).

    Для структуры "квадрат" характерно представление шифруемого блока данных в виде двумерного байтового массива. Криптографические преобразования могут выполняться над отдельными байтами массива, а также над его строками или столбцами.

    Структура алгоритма получила свое название от алгоритма Square, который был разработан в 1996 году Винсентом Риджменом (Vincent Rijmen) и Джоан Деймен (Joan Daemen) - будущими авторами алгоритма Rijndael, ставшего новым стандартом шифрования США AES после победы на открытом конкурсе. Алгоритм Rijndael также имеет Square-подобную структуру; также в качестве примера можно привести алгоритмы Shark (более ранняя разработка Риджмена и Деймен) и Crypton. Недостатком алгоритмов со структурой "квадрат" является их недостаточная изученность, что не помешало алгоритму Rijndael стать новым стандартом США.

    Рис. 5. Алгоритм Rijndael.

    На рис. 5 приведен пример операции над блоком данных, выполняемой алгоритмом Rijndael.

  5. Алгоритмы с нестандартной структурой, то есть те алгоритмы, которые невозможно причислить ни к одному из перечисленных типов. Ясно, что изобретательность может быть безгранична, поэтому классифицировать все возможные варианты алгоритмов шифрования представляется сложным. В качестве примера алгоритма с нестандартной структурой можно привести уникальный по своей структуре алгоритм FROG, в каждом раунде которого по достаточно сложным правилам выполняется модификация двух байт шифруемых данных (см. рис. 6).

    Рис. 6. Модификация двух байт шифруемых данных.

    Строгие границы между описанными выше структурами не определены, поэтому достаточно часто встречаются алгоритмы, причисляемые различными экспертами к разным типам структур. Например, алгоритм CAST-256 относится его автором к SP-сети, а многими экспертами называется расширенной сетью Фейстеля. Другой пример - алгоритм HPC, называемый его автором сетью Фейстеля, но относимый экспертами к алгоритмам с нестандартной структурой.

Государственным стандартом шифрования в России является алгоритм, зарегистрированный как ГОСТ 28147-89. Он является блочным шифром, то есть шифрует не отдельные символы, а 64-битные блоки. В алгоритме предусмотрено 32 цикла преобразования данных с 256-битным ключом, за счет этого он очень надежен (обладает высокой криптостойкостью). На современных компьютерах раскрытие этого шифра путем перебора ключей (“методом грубой силы”) займет не менее сотен лет, что делает такую атаку бес­смысленной. В США используется аналогичный блочный шифр AES .

В Интернете популярен алгоритм RSA, названный так по начальным буквам фамилий его авторов - Р.Райвеста (R.Rivest), А.Шамира (A.Shamir) и ЛАдлемана (L.Adleman). Это алгоритм с открытым ключом, стойкость которого основана на использовании свойств простых чисел. Для его взлома нужно разложить очень большое число на простые сомножители. Эту задачу сейчас умеют решать только перебором вариантов. Поскольку количество вариантов огромно, для раскрытия шифра требуется много лет работы со­временных компьютеров.

Для применения алгоритма RSA требуется построить открытый и секретный ключи следующим образом.

1. Выбрать два больших простых числа, р и q.
2. Найти их произведение n = p * q и значение f = (р - 1) (q - 1)
3. Выбрать число e (1 < e < k), которое не имеет общих делителей с f.
4. Найти число d, которое удовлетворяет условию d e = k f + 1 для некоторого целого k
5. Пара значений (e, n) - это открытый ключ RSA (его можно свободно публиковать), а пара (d, n) - это секретный ключ .

Передаваемое сообщение нужно сначала представить в виде последовательности чисел в интервале от 0 до n - 1. Для шифрования используют формулу y = х e mod n, где х - число исходного сообщения, (e, n) - открытый ключ, y - число закодированного сообщения, а запись х e mod n обозначает остаток от деления х на n. Расшифровка сообщения выполняется по формуле х = y d mod n.
Это значит, что зашифровать сообщение может каждый (открытый ключ общеизвестен), а прочитать его - только тот, кто знает секретный показатель степени d.
Для лучшего понимания мы покажем работу алгоритма RSA на простом примере.
ПРИМЕР: Возьмем р = 3 и q = 7, тогда находим n = р q = 21 и f = (р - 1) (q - 1) = 12. Выберем e = 5, тогда равенство d e = к f + 1 выполняется, например, при d = 17 (и к = 7). Таким образом, мы получили открытый ключ (5, 21) и секретный ключ (17, 21).

Зашифруем сообщение “123” с помощью открытого ключа (5,21). Получаем

1 1 5 mod 21 = 1 ,
2 2 5 mod 21 = 11 ,

3 → 3 5 mod 21 = 12,
то есть зашифрованное сообщение состоит из чисел 1 ,11и 12. Зная секретный ключ (17, 21), можно его расшифровать:

1 → 1 17 mod 21 = 1 ,

11 → 11 17 mod 21 = 2 ,
12 → 12 17 mod 21 = 3 .

Мы получили исходное сообщение.

Конечно, вы заметили, что при шифровании и расшифровке приходится вычислять остаток от деления очень больших чисел (например, 12 17) на n. Оказывается, само число 12 17 в этом случае находить не нужно. Достаточно записать в обычную целочисленную пере­менную, например х, единицу, а потом 17 раз выпол­нить преобразование х = 12*х mod 21. После этого в переменной х будет значение 12 17 mod 21 = 3. Попро­буйте доказать правильность этого алгоритма.
Для того чтобы расшифровать сообщение, нужно знать секретный показатель степени d. А для этого, в свою очередь, нужно найти сомножители р и q, такие что n = р q. Если n велико, это очень сложная задача, ее решение перебором вариантов на современном ком­пьютере займет сотни лет. В 2009 году группа ученых из разных стран в результате многомесячных расчетов на сотнях компьютеров смогла расшифровать сообще­ние, зашифрованное алгоритмом RSA с 768-битным ключом. Поэтому сейчас надежными считаются ключи с длиной 1024 бита и более. Если будет построен рабо­тающий квантовый компьютер, взлом алгоритма RSA будет возможен за очень небольшое время.
При использовании симметричных шифров всегда возникает проблема: как передать ключ, если канал связи ненадежный? Ведь, получив ключ, противник сможет расшифровать все дальнейшие сообщения. Для алгоритма RSA этой проблемы нет, сторонам достаточно обменяться открытыми ключами, которые можно показывать всем желающим.
У алгоритма RSA есть еще одно достоинство: его можно использовать для цифровой подписи сообщений. Она служит для доказательства авторства документов, защиты сообщений от подделки и умышленных изменений.

Цифровая подпись - это набор символов, который получен в результате шифрования сообщения с помощью личного секретного кода отправителя.

Отправитель может передать вместе с исходным сообщением такое же сообщение, зашифрованное с помощью своего секретного ключа (это и есть цифровая подпись). Получатель расшифровывает цифровую подпись с помощью открытого ключа. Если она совпа­ла с незашифрованным сообщением, можно быть уве­ренным, что его отправил тот человек, который знает секретный код. Если сообщение было изменено при передаче, оно не совпадет с расшифрованной цифровой подписью. Так как сообщение может быть очень длинным, для сокращения объема передаваемых дан­ных чаще всего шифруется не все сообщение, а только его хэш-код.
Во многих современных программах есть возможность шифровать данные с паролем. Например, офисные пакеты OpenOffice.org и Microsoft Office позволяют шифровать все создаваемые документы (для их просмотра и/или изменения нужно ввести пароль). При создании архива (например, в архиваторах 7Zip,WinRAR, WinZip ) также можно установить пароль, без которого извлечь файлы невозможно.
В простейших задачах для шифрования файлов можно использовать бесплатную программу Шифро­вальщик (http://www.familytree.ru/ru/cipher.htm), версии которой существуют для Linux и Windows . Програм­мы TnieCrypt (http://www.truecrypt.org/), BestCrypt (www. jetico.com) и FreeOTFE (freeotfe.org) создают логические диски-контейнеры, информация на которых шифруется. Свободно распространяемая программа DiskCrypto r (diskcryptor.net) позволяет шифровать разделы жестких дисков и даже создавать шифрованные флэш-диски и CD/DVD-диски.
Программа GnuPG (gnupg.org) также относится к свободному программному обеспечению. В ней под­держиваются симметричные и несимметричные шиф­ры, а также различные алгоритмы электронной циф­ровой подписи.

Стеганография

Видео YouTube

При передаче сообщений можно не только применять шифрование, но и скрывать сам факт передачи сообщения.


Стеганография - это наука о скрытой передаче информации путем скрытия самого факта передачи информации.

Древнегреческий историк Геродот описывал, например, такой метод: на бритую голову раба записывалось сообщение, а когда его волосы отрастали, он отправлялся к получателю, который брил его голову и читал сообщение.
Классический метод стеганографии - симпатические (невидимые) чернила, которые проявляются только при определенных условиях (нагрев, освещение, хиический проявитель). Например, текст, написанный молоком, можно прочитать при нагреве.
Сейчас стеганография занимается скрытием информации в текстовых, графических, звуковых и видеофайлах с помощью программного “внедрения” в них нужных сообщений.
Простейший способ - заменять младшие биты файла, в котором закодировано изображение. Причем это нужно сделать так, чтобы разница между исходным и полученным рисунками была неощутима для человека. Например, если в черно-белом рисунке (256 оттенков серого) яркость каждого пикселя кодируется 8 битами. Если поменять 1-2 младших бита этого кода, ““встроив” туда текстовое сообщение, фотография, в которой нет четких границ, почти не изменится. При замене 1 бита каждый байт исходного текстового сообщения хранится в млад­ших битах кодов 8 пикселей. Например, пусть первые 8 пикселей рисунка имеют такие коды:

10101101

10010100

00101010

01010010

10101010

10101010

10101011

10101111

Чтобы закодировать в них код буквы “И” (110010002), нужно изменить младшие биты кодов:

1010110 1

1001010 1

0010101 0

0101001 0

1010101 1

1010101 0

1010101 0

1010111 0

Получателю нужно взять эти младшие биты и “собрать” их вместе в один байт.
Для звуков используются другие методы стеганографии, основанные на добавлении в запись коротких условных сигналов, которые обозначают 1 и 0 и не воспри
нимаются

человеком на слух. Возможна также за­мена одного фрагмента звука на другой.
Для подтверждения авторства и охраны авторских прав на изображения, видео и звуковые файлы приме­няют цифровые водяные знаки - внедренную в файл информацию об авторе. Они получили свое название от старых водяных знаков на деньгах и документах. Для того чтобы установить авторство фотографии, достаточно расшифровать скрытую информацию, за­писанную с помощью водяного знака.
Иногда цифровые водяные знаки делают видимыми (текст или логотип компании на фотографии или на каждом кадре видеофильма). На многих сайтах, занимающихся продажей цифровых фотографий, видимые водяные знаки размещены на фотографиях, предназначенных для предварительного просмотра.


Контрольные вопросы:
  1. Какой алгоритм шифрования принят в России в качестве государственного стандарта?
  2. Что такое блочный алгоритм шифрования?
  3. К какому типу относится алгоритм RSA? На чем основана его криптостойкость?
  4. Что такое цифровая подпись?
  5. Как можно использовать алгоритм RSA для цифровой подписи?
  6. Что такое стеганография?
  7. Какие методы стеганографии существовали до изобретения компьютеров?
  8. Как можно добавить текст в закодированное изображение?
  9. На чем основаны методы стеганографии для звуковых и видеоданных?
  10. Что такое цифровые водяные знаки? Зачем они используются?

Задание:

1.Просмотреть материал лекции и ответить на контрольные вопросы.
2. Пройдитесь по ссылкам и познакомьтесь с программами для шифрования файлов.
3. Зашифруйте любой документ в любом из офисных пакетов OpenOffice.org или Microsoft Office и пришлите мне.