Меню
Бесплатно
Главная  /  Проблемы  /  Современные системы телекоммуникаций. Типы телекоммуникационных систем

Современные системы телекоммуникаций. Типы телекоммуникационных систем

Классификация сетей

В основу классификации ТВС положены наиболее характерные функциональные, информационные и структурные признаки.

По степени территориальной рассредоточенности элементов сети (абонентских систем, узлов связи) различают глобальные (государственные), региональные и локальные вычислительные сети (ГВС, РВС и ЛВС).

По характеру реализуемых функций сети делятся на вычислительные (основные функции таких сетей - обработка информации), информационные (для получения справочных данных по запросам пользователей), информационно-вычислительные, или смешанные, в которых в определенном, непостоянном соотношении выполняются вычислительные и информационные функции.

По способу управления ТВС делятся на сети с централизованным (в сети имеется один или несколько управляющих органов), децентрализованным (каждая АС имеет средства для управления сетью) и смешанным управлением, в которых в определенном сочетании реализованы принципы централизованного и децентрализованного управления (например, под централизованным управлением решаются только задачи с высшим приоритетом, связанные с обработкой больших объемов информации).

По организации передачи информации сети делятся на сети с селекцией информации и маршрутизацией информации. В сетях с селекцией информации, строящихся на основе моноканала, взаимодействие АС производится выбором (селекцией) адресованных им блоков данных (кадров): всем АС сети доступны все передаваемые в сети кадры, но копию кадра снимают только АС, которым они предназначены. В сетях с маршрутизацией информации для передачи кадров от отправителя к получателю может использоваться несколько маршрутов. Поэтому с помощью коммуникационных систем сети решается задача выбора оптимального (например, кратчайшего по времени доставки кадра адресату) маршрута.

По типу организации передачи данных сети с маршрутизацией информации делятся на сети с коммутацией цепей (каналов), коммутацией сообщений и коммутацией пакетов. В эксплуатации находятся сети, в которых используются смешанные системы передачи данных.

По топологии, т.е. конфигурации элементов в ТВС, сети делятся на два класса: широковещательные и последовательные. Широковещательные конфигурации и значительная часть последовательных конфигураций (кольцо, звезда с интеллектуальным центром, иерархическая) характерны для ЛВС. Для глобальных и региональных сетей наиболее распространенной является произвольная (ячеистая) топология. Нашли применение также иерархическая конфигурация и “звезда”.

В широковещательных конфигурациях в любой момент времени на передачу кадра может работать только одна рабочая станция (абонентная система). Остальные PC сети могут принимать этот кадр, т.е. такие конфигурации характерны для ЛВС с селекцией информации. Основные типы широковещательной конфигурации - общая шина, дерево, звезда с пассивным центром. Главные достоинства ЛВС с общей шиной - простота расширения сети, простота используемых методов управления, отсутствие необходимости в централизованном управлении, минимальный расход кабеля. ЛВС с топологией типа “дерево” - это более развитый вариант сети с шинной топологией. Дерево образуется путем соединения нескольких шин активными повторителями или пассивными размножителями (“хабами”), каждая ветвь дерева представляет собой сегмент. Отказ одного сегмента не приводит к выходу из строя остальных. В ЛВС с топологией типа “звезда” в центре находится пассивный соединитель или активный повторитель -достаточно простые и надежные устройства.



В последовательных конфигурациях, характерных для сетей с маршрутизацией информации, передача данных осуществляется последовательно от одной PC к соседней, причем на различных участках сети могут использоваться разные виды физической передающей среды.

К передатчикам и приемникам здесь предъявляются более низкие требования, чем в широковещательных конфигурациях. К последовательным конфигурациям относятся: произвольная (ячеистая), иерархическая, кольцо, цепочка, звезда с интеллектуальным центром, снежинка. В ЛВС наибольшее распространение получили кольцо и звезда, а также смешанные конфигурации - звездно-кольцевая, звездно-шинная.

В ЛВС с кольцевой топологией сигналы передаются только в одном направлении, обычно против часовой стрелки. Каждая PC имеет память объемом до целого кадра. При перемещении кадра по кольцу каждая PC принимает кадр, анализирует его адресное поле, снимает копию кадра, если он адресован данной PC, ретранслирует кадр. Естественно, что все это замедляет передачу данных в кольце, причем длительность задержки определяется числом PC. Удаление кадра из кольца производится обычно станцией-отправителем. В этом случае кадр совершает по кольцу полный круг и возвращается к станции-отправителю, который воспринимает его как квитанцию - подтверждение получения кадра адресатом. Удаление кадра из кольца может осуществляться и станцией-получателем, тогда кадр не совершает полного круга, а станция-отправитель не получает квитанции-подтверждения.

Кольцевая структура обеспечивает довольно широкие функциональные возможности ЛВС при высокой эффективности использования моноканала, низкой стоимости, простоте методов управления, возможности контроля работоспособности моноканала.

В широковещательных и большинстве последовательных конфигураций (за исключением кольца) каждый сегмент кабеля должен обеспечивать передачу сигналов в обоих направлениях, что достигается: в полудуплексных сетях связи - использованием одного кабеля для поочередной передачи в двух направлениях; в дуплексных сетях - с помощью двух однонаправленных кабелей; в широкополосных системах - применением различной несущей частоты для одновременной передачи сигналов в двух направлениях.

Глобальные и региональные сети, как и локальные, в принципе могут быть однородными (гомогенными), в которых применяются программно-совместимые ЭВМ, и неоднородными (гетерогенными), включающими программно-несовместимые ЭВМ. Однако, учитывая протяженность ГВС и РВС и большое количество используемых в них ЭВМ, такие сети чаще бывают неоднородными.

Основная функция телекоммуникационных систем (ТКС), или систем передачи данных (СПД) заключается в организации оперативного и надежного обмена информацией между абонентами. Главный показатель эффективности ТКС - время доставки информации - зависит от ряда факторов: структуры сети связи, пропускной способности линий связи, способов соединения каналов связи между взаимодействующими абонентами, протоколов информационного обмена, методов доступа абонентов к передающей среде, методов маршрутизации пакетов.

Типы сетей, линий и каналов связи. В ТВС используются сети связи - телефонные, телеграфные, телевизионные, спутниковые. В качестве линий связи применяются: кабельные (обычные телефонные линии связи, витая пара, коаксиальный кабель, волоконнооптические линии связи (ВОЛC, или световоды), радиорелейные, радиолинии.

Среди кабельных линий связи наилучшие показатели имеют световоды. Основные их преимущества: высокая пропускная способность (сотни мегабит в секунду), обусловленная использованием электромагнитных волн оптического диапазона; нечувствительность к внешним электромагнитным полям и отсутствие собственных электромагнитных излучений, низкая трудоемкость прокладки оптического кабеля; искро-, взрыво- и пожаробезопасность; повышенная устойчивость к агрессивным средам; небольшая удельная масса (отношение погонной массы к полосе пропускания); широкие области применения (создание магистралей коллективного доступа, систем связи ЭВМ с периферийными устройствами локальных сетей, в микропроцессорной технике и т.д.).

Недостатки ВОЛС: передача сигналов осуществляется только в одном направлении; подключение к световоду дополнительных ЭВМ значительно ослабляет сигнал; необходимые для световодов высокоскоростные модемы пока еще дороги; световоды, соединяющие ЭВМ, должны снабжаться преобразователями электрических сигналов в световые и обратно.

В ТВС нашли применение следующие типы каналов связи:

симплексные, когда передатчик и приемник связываются одной линией связи, по которой информация передается только в одном направлений (это характерно для телевизионных сетей связи);

полудуплексные, когда два узла связи соединены также одной линией, по которой информация передается попеременно то в одном направлении, то в противоположном (это характерно для информационно-справочных, запрос-ответных систем);

дуплексные, когда два узла связи соединены двумя линиями (прямой линией связи и обратной), по которым информация одновременно передается в противоположных направлениях.

Коммутируемые и выделенные каналы связи. В ТКС различают выделенные (некоммутируемые) каналы связи и с коммутацией на время передачи информации по этим каналам.

При использовании выделенных каналов связи приемопередающая аппаратура узлов связи постоянно соединена между собой. Этим обеспечиваются высокая степень готовности системы к передаче информации, более высокое качество связи, поддержка большого объема графика. Из-за сравнительно больших расходов на эксплуатацию сетей с выделенными каналами связи их рентабельность достигается только при условии достаточно полной загрузки каналов.

Для коммутируемых каналов связи, создаваемых только на время передачи фиксированного объема информации, характерны высокая гибкость и сравнительно небольшая стоимость (при малом объеме трафика). Недостатки таких каналов: потери времени на коммутацию (установление связи между абонентами), возможность блокировки из-за занятости отдельных участков линии связи, более низкое качество связи, большая стоимость при значительном объеме трафика.

Аналоговое и цифровое кодирование цифровых данных. Пересылка данных от одного узла ТКС к другому осуществляется последовательной передачей всех битов сообщения от источника к пункту назначения. Физически информационные биты передаются в виде аналоговых или цифровых электрических сигналов. Аналоговыми называются сигналы, которые могут представлять бесчисленное количество значений некоторой величины в пределах ограниченного диапазона. Цифровые (дискретные) сигналы могут иметь одно или конечный набор значений. При работе с аналоговыми сигналами для передачи закодированных данных используется аналоговый несущий сигнал синусоидальной формы, а при работе с цифровыми сигналами - двухуровневый дискретный сигнал. Аналоговые сигналы менее чувствительны к искажению, обусловленному затуханием в передающей среде, зато кодирование и декодирование данных проще осуществляются для цифровых сигналов.

Аналоговое кодирование применяется при передаче цифровых данных по телефонным (аналоговым) линиям связи, доминирующим в региональных и глобальных ТВС и изначально ориентированным на передачу акустических сигналов (речи). Перед передачей цифровые данные, поступающие обычно из ЭВМ, преобразуются в аналоговую форму с помощью модулятора-демодулятора (модема), обеспечивающего цифро-аналоговый интерфейс.

Возможны три способа преобразования цифровых данных в аналоговую форму или три метода модуляции:

амплитудная модуляция, когда меняется только амплитуда несущей синусоидальных колебаний в соответствии с последовательностью передаваемых информационных битов: например, при передаче единицы амплитуда колебаний устанавливается большой, а при передаче нуля -малой или сигнал несущей вообще отсутствует;

частотная модуляция, когда под действием модулирующих сигналов (передаваемых информационных битов) меняется только частота несущей синусоидальных колебаний: например, при передаче нуля - низкая;

фазовая модуляция, когда в соответствии с последовательностью передаваемых информационных битов изменяется только фаза несущей синусоидальных колебаний: при переходе от сигнала 1 к сигналу 0 или наоборот фаза меняется на 180 град..

Передающий модем преобразует (модулирует) сигнал несущей синусоидальных колебаний (амплитуду, частоту или фазу) таким образом, чтобы он мог нести модулирующий сигнал, т.е. цифровые данные от ЭВМ или терминала. Обратное преобразование (демодуляция) осуществляется принимающим модемом. В соответствии с реализуемым методом модуляции различают модемы с амплитудной, частотной и фазовой модуляцией. Наибольшее распространение получили частотная и амплитудная модуляции.

Цифровое кодирование цифровых данных выполняется напрямую, путем изменения уровней сигналов, несущих информацию.

Например, если в ЭВМ цифровые данные представляются сигналами уровней 5В для кода 1 и 0,2В для кода 0, то при передаче этих данных в линию связи уровни сигналов преобразуются соответственно в +12В и -12В. Такое кодирование осуществляется, в частности, с помощью асинхронных последовательных адаптеров RS-232-C при передаче цифровых данных от одного компьютера к другому на небольшие (десятки и сотни метров) расстояния.

Синхронизация элементов ТКС. Синхронизация - это часть протокола связи. В процессе синхронизации связи обеспечивается синхронная работа аппаратуры приемника и передатчика, при которой приемник осуществляет выборку поступающих информационных битов (т.е. замер уровня сигнал в линии связи) строго в моменты их прихода. Синхросигналы настраивают приемник на передаваемое сообщение еще до его прихода поддерживают синхронизацию приемника с приходящими битами данных.

В зависимости от способов решения проблемы синхронизации различают синхронную передачу, асинхронную передачу и передачу с автоподстройкой.

Синхронная передача отличается наличием дополнительной линии связи (кроме основной, по которой передаются данные) для передачи синхронизирующих импульсов (СИ) стабильной частоты. Каждый СИ подстраивает приемник. Выдача битов данных в линию связи передатчиком и выборка информационных сигналов приемником производятся в моменты появления СИ. В синхронной передаче синхронизация осуществляется весьма надежно, однако этой достигается дорогой ценой - необходимостью дополнительной линии связи.

Асинхронная передача не требует дополнительной линии связи. Передача данных осуществляется небольшими блоками фиксированной длины (обычно байтами). Синхронизация приемника достигается тем, что перед каждым передаваемым байтом посылается дополнительный бит - стартбит, а после переданного байта - еще один дополнительный бит -стопбит. Для синхронизации используется стартбит. Такой способ синхронизации может использоваться только в системах с низкими скоростями передачи данных.

Передача с автоподстройкой, также не требующая дополнительной линии связи, применяется в современных высокоскоростных системах передачи данных. Синхронизация достигается за счет использования самосинхронизирующих кодов (СК). Кодирование передаваемых данных с помощью СК заключается в том, чтобы обеспечить регулярные и частые изменения (переходы) уровней сигнала в канале. Каждый переход уровня сигнала от высокого к низкому или наоборот используется для подстройки приемника. Лучшими считаются такие СК, которые обеспечивают переход уровня сигнала не менее одного раза в течение интервала времени, необходимого на прием одного информационного бита. Чем чаще переходы уровня сигнала, тем надежнее осуществляется синхронизация приемника и увереннее производится идентификация принимаемых битов данных.

Наиболее распространенными являются следующие самосинхронизирующие коды :

NRZ-код (код без возвращения к нулю);

RZ-код (код с возвращением к нулю);

Манчестерский код;

Биполярный код с поочередной инверсией уровня (например, код AMI).

Рис. Схемы кодирования сообщения с помощью самосинхронизирующих кодов

На рис. представлены схемы кодирования сообщения 0101100 с помощью этих СК.

Для характеристики и сравнительной оценки СК используются следующие показатели:

уровень (качество) синхронизации;

Надежность (уверенность) распознавания и выделения принимаемых информационных битов;

Требуемая скорость изменения уровня сигнала в линии связи при использовании СК, если пропускная способность линии задана;

Сложность (и, следовательно, стоимость) оборудования, реализующего СК.

Цифровые сети связи (ЦСС). В последние годы в ТВС все большее распространение получают цифровые сети связи, в которых используется цифровая технология.

Причины распространения цифровой технологии в сетях:

Цифровые устройства, используемые в ЦСС, производятся на основе интегральных схем высокой интеграции; по сравнению с аналоговыми устройствами они отличаются большой надежностью и устойчивостью в работе и, кроме того, в производстве и эксплуатации, как правило, дешевле;

Цифровую технологию можно использовать для передачи любой информации по одному каналу (акустических сигналов, телевизионных видеоданных, факсимильных данных);

Цифровые методы преодолевают многие из ограничений передачи и хранения, которые присущи аналоговым технологиям.

В ЦСС при передаче информации осуществляется преобразование аналогового сигнала в последовательность цифровых значений, а при приеме - обратное преобразование.

Аналоговый сигнал проявляется как постоянное изменение амплитуды во времени. Например, при разговоре по телефону, который действует как преобразователь акустических сигналов в электрические, механические колебания воздуха (чередование высокого и низкого давления) преобразуются в электрический сигнал с такой же характеристикой огибающей амплитуды. Однако непосредственная передача аналогового электрического сигнала по телефонной линии связи сопряжена с рядом недостатков: искажением сигнала вследствие его нелинейности, которая увеличивается усилителями, затуханием сигнала при передаче через среду, подверженностью влиянию шумов в канале и др.

В ЦСС эти недостатки преодолимы. Здесь форма аналогового сигнала представляется в виде цифровых (двоичных) образов, цифровых значений, представляющих соответствующие значения огибающей амплитуды синусоидальных колебаний в точках на дискретных уровнях. Цифровые сигналы также подвержены ослаблению и шумам при их прохождении через канал, однако на приемном пункте необходимо отмечать лишь наличие или отсутствие двоичного цифрового импульса, а не его абсолютное значение, которое важно в случае аналогового сигнала. Следовательно, цифровые сигналы принимаются надежнее, их можно полностью восстановить, прежде чем они из-за затухания станут ниже порогового значения.

Преобразование аналоговых сигналов в цифровые осуществляется различными методами. Один из них - импульсно-кодовая модуляция (ИКМ), предложенная в 1938 г. А.Х. Ривсом (США). При использовании ИКМ процесс преобразования включает три этапа: отображение, квантование и кодирование (рис. 12.2).

Рис. 12.2. Преобразование аналогового сигнала в 8-элементный цифровой код

Первый этап (отображение) основан на теории отображения Найквиста. Основное положение этой теорий гласит: “Если аналоговый сигнал отображается на регулярном интервале с частотой не менее чем в два раза выше максимальной частоты исходного сигнала в канале, то отображение будет содержать информацию, достаточную для восстановления исходного сигнала”. При передаче акустических сигналов (речи) представляющие их электрические сигналы в телефонном канале занимают полосу частот от 300 до 3300 Гц. Поэтому в ЦСС принята частота отображений, равная 8000 раз в секунду. Отображения, каждое из которых называется сигналом импульсно-амплитудной модуляции (ИАМ), запоминаются, а затем трансформируются в двоичные образы.

На этапе квантования каждому сигналу ИАМ придается квантованное значение, соответствующее ближайшему уровню квантования. И ЦСС весь диапазон изменения амплитуды сигналов ИАМ разбивается на 128 или 256 уровней квантования. Чем больше уровней квантования, тем точнее амплитуда ИАМ-сигнала представляется квантованным уровнем.

На этапе кодирования каждому квантованному отображению ставится в соответствие 7-разрядный (если число уровней квантования равно 128) или 8-разрядный (при 256-шаговом квантовании) двоичный код. На рис. 12.2 показаны сигналы 8-элементного двоичного кода 00101011, соответствующего квантовому сигналу с уровнем 43. При кодировании 7-элементнымй кодами скорость передачи данных по каналу должна составлять 56 Кбит/с (это произведение частоты отображения на разрядность двоичного кода), а при кодировании 8-элементными кодами - 64 Кбит/с.

В современных ЦСС используется и другая концепция преобразования аналоговых сигналов в цифровые, при которой квантуются и затем кодируются не сами сигналы ИАМ, а лишь их изменения, причем число уровней квантования принимается таким же. Очевидно, что такая концепция позволяет производить преобразование сигналов с большей точностью.

Спутниковые сети связи. Появление спутниковых сетей связи вызвало такую же революцию в передаче информации, как изобретение телефона.

Первый спутник связи был запущен в 1958 г., а в 1965 г. запущен первый коммерческий спутник связи (оба - в США). Эти спутники были пассивными, позже на спутниках стали устанавливать усилители и приемопередающую аппаратуру.

Для управления передачей данных между спутником и наземными РТС используются следующие способы:

1. Обычное мультиплексирование - с частотным разделением и временным разделением. В первом случае весь частотный спектр радиоканала разделяется на подканалы, которые распределяются между пользователями для передачи любого графика.

Издержки такого способа: при нерегулярном ведении передач подканалы используются нерационально; значительная часть исходной полосы пропускания канала используется в качестве разделительной полосы для предотвращения нежелательного влияния подканалов друг на друга. Во втором случае весь временной спектр делится между пользователями, которые по своему усмотрению распоряжаются предоставленными временными квантами (слотами). Здесь также возможно простаивание канала из-за нерегулярного его использования.

2. Обычная дисциплина “первичный / вторичный” с использованием методов и средств опроса/выбора. В качестве первичного органа, реализующего такую дисциплину управления спутниковой связью, чаще выступает одна из наземных РТС, а реже - спутник. Цикл опроса и выбора занимает значительное время, особенно при наличии в сети большого количества АС. Поэтому время реакции на запрос пользователя может оказаться для него неприемлемым.

3. Дисциплина управления типа “первичный / вторичный” без опроса, с реализацией метода множественного доступа с квантованием времени (ТДМА). Здесь слоты назначаются первичной РТС, называемой эталонной. Принимая запросы от других РТС, эталонная станция в зависимости от характера графика и занятости канала удовлетворяет эти запросы путем назначения станциям конкретных слотов для передачи кадров. Такой метод широко используется в коммерческих спутниковых сетях.

4. Равноранговые дисциплины управления. Для них характерно, что все пользователи имеют равное право доступа к каналу и между ними происходит соперничество за канал. В начале 70-х годов Н.Абрамсон из Гавайского университета предложил метод эффективного соперничества за канал между некоординируемыми пользователями, названный системой ALOHA. Существует несколько вариантов этой системы: система, реализующая метод случайного доступа (случайная ALOHA); равноранговая приоритетная слотовая система (слотовая ALOHA) и др.

К основным преимуществам спутниковых сетей связи относятся следующие:

Большая пропускная способность, обусловленная работой спутников в широком диапазоне гигагерцовых частот. Спутник может поддерживать несколько тысяч речевых каналов связи. Например, один из используемых в настоящее время коммерческих спутников имеет 10 транспондеров, каждый из которых может передавать 48 Мбит/с;

Обеспечение связи между станциями, расположенными на очень больших расстояниях, и возможность обслуживания абонентов в самых труднодоступных точках;

Независимость стоимости передачи информации от расстояния между взаимодействующими абонентами (стоимость зависит от продолжительности передачи или объема передаваемого графика);

Возможность построения сети без физически реализованных коммутационных устройств, обусловленная широковещательностью работы спутниковой связи. Эта возможность связана со значительным экономическим эффектом, который может быть получен по сравнению с использованием обычной неспутниковой сети, основанной на многочисленных физических линиях связи и коммуникационных устройствах.

Недостатки спутниковых сетей связи:

Необходимость затрат средств и времени на обеспечение конфиденциальности передачи данных, на предотвращение возможности перехвата данных “чужими” станциями;

Наличие задержки приема радиосигнала наземной станцией из-за больших расстояний между спутником и РТС. Это может вызвать проблемы, связанные с реализацией канальных протоколов, а также временем ответа;

Возможность взаимного искажения радиосигналов от наземных станций, работающих на соседних частотах;

Подверженность сигналов на участках Земля - спутник и спутник -Земля влиянию различных атмосферных явлений.

Для решения проблем с распределением частот в диапазонах 6/4 и 14/12 ГГц и размещением спутников на орбите необходимо активное сотрудничество многих стран, использующих технику спутниковой связи.

Телекоммуникация и сетевые технологии являются в настоящее время той движущей силой, которая обеспечивает развитие мировой цивилизации. Практически нет области производственных и общественных отношений, которая не использовала бы возможности современных информационных технологий на базе телекоммуникаций.

Телекоммуникация - передача данных на большие расстояния.

Средства телекоммуникации - совокупность технических, программных и организационных средств для передачи данных на большие расстояния.

Телекоммуникационными сетями являются:

1 Телефонные сети для передачи телефонных данных (голоса);

2 Радиосети для передачи аудиоданных;

3 Телевизионные сети для передачи видеоданных;

4 цифровые (компьютерные) сети или сети передачи данных (СПД) для передачи цифровых (компьютерных) данных.

Данные в цифровых телекоммуникационных сетях формируются в виде сообщений, имеющих определённую структуру и рассматриваемых как единое целое.

Данные (сообщения)могут быть:

1 непрерывными;

2 дискретными.

Непрерывные данные могут быть представлены в виде непрерывной функции времени, например, речь, звук, видео. Дискретные данные состоят из знаков (символов).

Передача данных в телекоммуникационной сети осуществляется с помощью их физического представления - сигналов.

В компьютерных сетях для передачи данных используются следующие типы сигналов:

1 электрический (электрический ток);

2 оптический (свет);

3 электромагнитный (электромагнитное поле излучения - радиоволны.

Для передачи электрических и оптических сигналов применяются кабельные линии связи:

1 электрические (ЭЛС)

2 волоконно-оптические (ВОЛС)

Передача электромагнитных сигналов осуществляется через радиолинии (РЛС) и спутниковые линии связи (СЛС).

Сигналы, как и данные, могут быть:

1 непрерывными;

2 дискретными.

При этом, непрерывные и дискретные данные могут передаваться в телекоммуникационной сети либо в виде непрерывных, либо в виде дискретных сигналов.

Процесс преобразования (способ представления) данных в вид, требуемый для передачи по линии связи и позволяющий, в некоторых случаях, обнаруживать и исправлять ошибки, возникающие из-за помех при их передаче, называется кодированием. Примером кодирования является представление данных в виде двоичных символов. В зависимости от параметров среды передачи и требований к качеству передачи данных могут использоваться различные методы кодирования.

Линия связи - физическая среда, по которой передаются информационные сигналы, формируемые специальными техническими средствами, относящимися к линейному оборудованию (передатчики, приёмники, усилители, и т.п.). Линию связи часто рассматривают как совокупность физических цепей и технических средств, имеющих общие линейные сооружения, устройства их обслуживания и одну и ту же среду распространения. Сигнал, передаваемый в линии связи, называется линейным (от слова линия).

Линии связи можно разбить на 2 класса:

1. кабельные (электрические и волоконно-оптические линии связи):

2. беспроводные (радиолинии).

На основе линий связи строятся каналы связи.

Канал связи представляет собой совокупность одной или нескольких линий связи и каналообразующего оборудования, обеспечивающих передачу данных между взаимодействующими абонентами в виде физических сигналов, соответствующих типу линии связи.

Канал связи может состоять из нескольких последовательных линий связи, образуя составной канал. В то же время, в одной линии связи может быть сформировано несколько каналов связи, обеспечивающих одновременную передачу данных между несколькими парами абонентов.

Телекоммуникационная вычислительная сеть (ТВС) - это сеть обмена и распределенной обработки информации, образуемая множеством взаимосвязанных абонентских систем и средствами связи.

Средства передачи и обработки информации ориентированы в ней на коллективное использование общественных ресурсов аппаратных, информационных, программных.

Телекоммуникация - дистанционная передача данных на базе компьютерных сетей и современных технических средств связи.

Абонентская система (АС) - это совокупность ЭВМ, программного обеспечения, периферийного оборудования, средств связи с коммутационной подсетью вычислительной сети, выполняющих прикладные процессы.

Коммуникационная подсеть, или телекоммуникационная система (ТКС), представляет собой совокупность физической среды передачи информации, аппаратных и программных средств, обеспечивающих взаимодействие АС.

С появлением ТВС удалось решить две очень важные проблемы:

обеспечение в принципе неограниченного доступа к ЭВМ пользователей независимо от их территориального перемещения больших массивов информации на большие расстояния. В ТВС все находящиеся в составе разные абонентские системы ЭВМ связываются между собой автоматически.

Каждая ЭВМ сети приспособлена как для работы в автономном режиме под управлением своей операционной системы (ОС), так и в качестве составного звена сети.

ТВС позволяет решать такие качественно новые задачи, как, например:

* обеспечение распределенной обработки данных и параллельной обработки многими ЭВМ;

* возможность создания распределенной базы данных (РБД), размещаемой в памяти различных ЭВМ;

* возможность обмена большими массивами информации между ЭВМ, удаленными друг от друга на значительные расстояния;

* коллективное использование дорогостоящих ресурсов: прикладных программных продуктов (ППП), баз данных (БД),баз знаний (БЗ), запоминающих устройств (ЗУ), печатающих устройств (ПУ), сетевых операционных систем (ОС);

* предоставление большого перечня услуг, в том числе таких, как электронная почта (ЭП), телеконференции, электронные доски объявлений (ЭДО), дистанционное обучение, организация безбумажного документооборота, электронная подпись, принятие управленческих решений;

* повышение эффективности использования средств вычислительной техники и информатики (СВТИ) за счет более интенсивной и равномерной их загрузки, а также надежности обслуживания запросов пользователей;

* возможность оперативного перераспределения вычислительных мощностей между пользователями сети в зависимости от изменения их потребностей, а также резервирование этих мощностей и средств передачи данных на случай выхода из строя отдельных элементов сети;

* сокращение расходов на приобретение и эксплуатацию СВТИ (за счет коллективного их использования);

* обеспечение работ по совершенствованию технических, программных и информационных средств.

Телекоммуникационные вычислительные сети являются высшей формой многомашинных ассоциаций. Основные отличия компьютерных сетей от многомашинного вычислительного комплекса следующие:

* размерность, то есть большое количество ЭВМ (от десятка до нескольких сотен), расположенных на расстоянии друг от друга от десятков метров до нескольких сотен и даже тысяч километров; разделение функции ЭВМ, то есть обработка данных и управление системой, анализ и хранение информации распределены между различными ЭВМ сети;

* необходимость решения в сети задачи маршрутизации сообщений, то есть сообщение от одной ЭВМ к другой в сети может быть передано по различным маршрутам в зависимости от приоритета и состояния каналов связи, соединяющих ЭВМ друг с другом.

По функциональному признаку все множество систем компьютерной сети можно разделить на абонентские, коммутационные и главные (Host) системы.

Абонентская система представляет собой компьютер, ориентированный на работу в составе компьютерной сети и обеспечивающий пользователям доступ к ее вычислительным ресурсам.

Коммутационные системы являются узлами коммутации сети передачи данных и обеспечивают организацию составных каналов передачи данных между абонентами системы. В качестве управляющих элементов узлов коммутации используются процессоры телеобработки или специальные коммутационные (сетевые) процессоры.

Большим разнообразием отличаются главные (Host) системы или сетевые серверы.

Сервером принято называть специальный компьютер, выполняющий основные сервисные функции: управление сетью, сбор, обработку, хранение и предоставление информации абонентам компьютерной сети.

В зависимости от территориальной рассредоточенности абонентских систем компьютерные (вычислительные) сети разделяют на три основных класса:

* глобальные сети (WAN - Wide Area Network);

* региональные сети (MAN - Metropolitan Area Network);

* локальные сети (LAN - Local Area Network).

Основная функция телекоммуникационных систем (ТКС), или территориальных сетей связи (ТСС), в условиях функционирования телекоммуникационных вычислительных сетей (ТВС) заключается в организации оперативного и надежного обмена информацией между абонентами, а также в сокращении затрат на передачу данных.

Главный показатель эффективности функционирования ТКС - время доставки информации. Он зависит от ряда факторов: структуры сети связи, пропускной способности линий связи, способов соединения каналов связи между взаимодействующими абонентами, протоколов информационного обмена, методов доступа абонентов к передающей среде, методов маршрутизации пакетов и др.

Наиболее распространенные телекоммуникационные системы, или территориальные сети связи это: Х.25, Frame Relay (FR), IP, ISDN, SDN, ATM. Особенно важным преимуществом той или иной сетевой технологии является ее возможность наиболее полно использовать имеющуюся в распоряжении пользователя полосу пропускания канала связи и адаптироваться к качеству канала.К технологиям глобальных сетей Интернета относятся сети Х.25,frame relay, SMDS, ATM. Все эти сети, кроме IP, используют маршрутизацию пакетов, основанную на виртуальных каналах между конечными узлами сети.

В современных телекоммуникационных системах информация передается с помощью электрических сигналов (тока или напряжения), радиосигналов или световых сигналов - все эти физические процессы представляют собой колебания электромагнитного поля различной частоты и природы

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

ФИЛИАЛ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

В Г. ТОБОЛЬСКЕ

Тобольский педагогический институт им. Д.И. Менделеева

Кафедра физики, математики, информатики и методик преподавания

Курсовая работа

Телекоммуникационные системы

студента 5 курса заочной формы обучения

естественнонаучного факультета,

направления «Профессиональное обучение

(электроника, радиотехника и связь)»

Сороченко Александра Николаевича

Преподаватель: кандидат педагогических наук,

доцент Кутумова А. А.

Тобольск 2016

Введение

1. Характеристики и классификация информационных сетей

2. Многоуровневая архитектура информационных сетей

3. Разновидности каналов связи

4. Организация доступа к информационным сетям

4.1 Структура территориальных сетей

4.2 Основные виды доступа

4.2.1 Сервис телекоммуникационных технологий

4.2.2 Электронная почта

4.2.3 Файловый обмен

4.2.4 Телеконференции и "доски объявлений"

4.2.5 Доступ к распределенным базам данных

4.2.6 Информационная система WWW

Заключение

Список литературы

Введение

XXI век без преувеличения можно назвать веком информационных технологий. Понятие информационные технологии включает в себя множество аспектов. Одной из важнейших частей данного направления является непосредственно передача информации посредством информационных сетей.

Технологии телекоммуникаций - это принципы организации современных аналоговых и цифровых систем и сетей связи, включая компьютерные и INTERNET-сети.

Средства телекоммуникаций - это совокупность технических устройств, алгоритмов и программного обеспечения, позволяющих передавать и принимать речь, информационные данные, мультимедийную информацию при помощи электрических и электромагнитных колебаний по кабельным, волоконно-оптическим и радиотехническим каналам в различных диапазонах волн. Это устройства преобразования информации, ее кодирования и декодирования, модуляции и демодуляции, это современные компьютерные технологии обработки.

1. Характеристики и классификация информационных сетей

Современные телекоммуникационные технологии основаны на использовании информационных сетей.

Коммуникационная сеть - система, состоящая из объектов, осуществляющих функции генерации, преобразования, хранения и потребления продукта, называемых пунктами (узлами) сети и линий передачи (связей, коммуникаций, соединений), осуществляющих передачу продукта между пунктами.

Отличительная особенность коммуникационной сети - большие расстояния между пунктами по сравнению с геометрическими размерами участков пространства, занимаемых пунктами.

Информационная сеть - коммуникационная сеть, в которой продуктом генерирования, переработки, хранения и использования является информация.

Вычислительная сеть - информационная сеть, в состав которой входит вычислительное оборудование. Компонентами вычислительной сети могут быть ЭВМ и периферийные устройства, являющиеся источниками и приемниками данных, передаваемых по сети. Эти компоненты составляют оконечное оборудование данных (ООД или DTE - Data Terminal Equipment). В качестве ООД могут выступать ЭВМ, принтеры, плоттеры и другое вычислительное, измерительное и исполнительное оборудование автоматических и автоматизированных систем. Собственно пересылка данных происходит с помощью сред и средств, объединяемых под названием среда передачи данных.

Подготовка данных, передаваемых или получаемых ООД от среды передачи данных, осуществляется функциональным блоком, называемым аппаратурой окончания канала данных (АКД или DCE - Data Circuit-Terminating Equipment). АКД может быть конструктивно отдельным или встроенным в ООД блоком. ООД и АКД вместе представляют собой станцию данных, которую часто называют узлом сети. Примером АКД может служить модем.

Вычислительные сети классифицируются по ряду признаков.

В зависимости от расстояний между связываемыми узлами различают вычислительные сети:

Территориальные, охватывающие значительное географическое пространство; среди территориальных сетей можно выделить сети региональные и глобальные, имеющие соответственно региональные или глобальные масштабы; региональные сети иногда называют сетями MAN (Metropolitan Area Network), а общее англоязычное название для территориальных сетей - WAN (Wide Area Network);

Локальные (ЛВС) ? охватывающие ограниченную территорию (обычно в пределах удаленности станций не более чем на несколько десятков или сотен метров друг от друга, реже на 1...2 км); локальные сети обозначают LAN (Local Area Network);

Корпоративные (масштаба предприятия) ? совокупность связанных между собой ЛВС, охватывающих территорию, на которой размещено одно предприятие или учреждение в одном или нескольких близко расположенных зданиях. Локальные и корпоративные вычислительные сети - основной вид вычислительных сетей, используемых в системах автоматизированного проектирования (САПР).

Особо выделяют единственную в своем роде глобальную сеть Internet (реализованная в ней информационная служба World Wide Web (WWW) переводится на русский язык как всемирная паутина); это сеть сетей со своей технологией. В Internet существует понятие интрасетей (Intranet) - корпоративных сетей в рамках Internet.

Различают интегрированные сети, неинтегрированные сети и подсети. Интегрированная вычислительная сеть (интерсеть) представляет собой взаимосвязанную совокупность многих вычислительных сетей, которые в интерсети называются подсетями.

В автоматизированных системах крупных предприятий подсети включают вычислительные средства отдельных проектных подразделений. Интерсети нужны для объединения таких подсетей, а также для объединения технических средств автоматизированных систем проектирования и производства в единую систему комплексной автоматизации (CIM - Computer Integrated Manufacturing).

Обычно интерсети приспособлены для различных видов связи: телефонии, электронной почты, передачи видеоинформации, цифровых данных и т.п., и в этом случае они называются сетями интегрального обслуживания. Развитие интерсетей заключается в разработке средств сопряжения разнородных подсетей и стандартов для построения подсетей, изначально приспособленных к сопряжению. Подсети в интерсетях объединяются в соответствии с выбранной топологией с помощью блоков взаимодействия.

2. Многоуровневая архитектура информационных сетей

В общем случае для функционирования сетей ЭВМ необходимо решить две проблемы:

Передать данные по назначению в правильном виде и своевременно;

Поступившие по назначению данные пользователю должны быть распознаваемы и иметь надлежащую форму для их правильного использования.

Первая проблема связана с задачами маршрутизации и обеспечивается сетевыми протоколами (протоколами низкого уровня).

Вторая проблема вызвана использованием в сетях разных типов ЭВМ, с разными кодами и синтаксисом языка. Эта часть проблемы решается путем введения протоколов высокого уровня.

Таким образом, полная архитектура, ориентированная на оконечного пользователя, включает в себя оба протокола.

Разработанная эталонная модель взаимодействия открытых систем (ВОС) поддерживает концепцию, при которой каждый уровень предоставляет услуги вышестоящему уровню и базируется на основе нижележащего уровня и использует его услуги. Каждый уровень выполняет определенную функцию по передачи данных. Хотя они должны работать в строгой очередности, но каждый из уровней допускает несколько вариантов. Рассмотрим эталонную модель. Она состоит из 7 уровней и представляет собой многоуровневую архитектуру, которая описывается стандартными протоколами и процедурами.

Три нижних уровня предоставляют сетевые услуги. Протоколы, реализующие эти уровни, должны быть предусмотрены в каждом узле сети.

Четыре верхних уровня предоставляют услуги самим оконечным пользователям и таким образом, связаны с ними, а не с сетью.

Физический уровень. В этой части модели определяются физические, механические и электрические характеристики линий связи, составляющих ЛВС (кабелей, разъемов, оптоволоконных линий и т.п.).

Можно считать, что этот уровень отвечает за аппаратное обеспечение. Хотя функции других уровней могут быть реализованы в соответствующих микросхемах, но все же они относятся к ПО. Функции физического уровня заключаются в гарантии того, что символы, поступающие в физическую среду передачи на одном конце канала, достигнут другого конца. При использовании этой нижестоящей услуги по транспортировке символов задача протокола канала состоит в обеспечении надежной (безошибочной) передаче блоков данных по каналу. Такие блоки часто называют циклами, или кадрами. Процедура обычно требует: синхронизации по первому символу в кадре, распознавания конца кадра, обнаружения ошибочных символов, если таковые возникнут, и исправления таких символов каким-либо способом (обычно это делается путем запроса на повторную передачу кадра, в котором обнаружены один или несколько ошибочных символов).

Уровень канала. Уровень канала передачи данных и находящийся под ним физический уровень обеспечивают канал безошибочной передачи между двумя узлами в сети. На этом уровне определяются правила использования физического уровня узлами сети. Электрическое представление данных в ЛВС (биты данных, методы кодирования данных и маркеры) распознаются на этом и только на этом уровне. Здесь обнаруживаются (распознаются) и исправляются ошибки путем требований повторной передачи данных.

Сетевой уровень. Функция сетевого уровня состоит в том, чтобы установить маршрут для передачи данных по сети или при необходимости через несколько сетей от узла передачи до узла назначения. Этот уровень предусматривает также управление потоком или перегрузками с целью предотвращения переполнения сетевых ресурсов (накопителей в узлах и каналов передачи), которое может привести к прекращению работы. При выполнении этих функций на сетевом уровне используется услуга нижестоящего уровня - канала передачи данных, обеспечивающего безошибочное поступление по сетевому маршруту блока данных, введенного в канал на противоположном конце.

Основная задача нижних уровней передать по маршруту блоки данных от источника к получателю, доставив их своевременно в желаемый конец.

Тогда задача верхних уровней - фактическая доставка данных в правильном виде и распознаваемой форме. Эти верхние уровни не знают о существовании сети. Они обеспечивают только требующуюся от них услугу.

Транспортный уровень. Обеспечивает надежный, последовательный обмен данными между двумя оконечными пользователями. Для этой цели на транспортном уровне используется услуга сетевого уровня. Он управляет также потоком, чтобы гарантировать правильный прием блоков данных. Вследствие различия оконечных устройств, данные в системе, могут передаваться с разными скоростями, поэтому, если не действует управление потоками, более медленные системы могут быть переполнены быстродействующими. Когда в процессе обработки находится больше одного пакета, транспортный уровень контролирует очередность прохождения компонент сообщения. Если приходит дубликат принятого ранее сообщения, то данный уровень опознает это и игнорирует сообщение.

Уровень сеанса. Функции этого уровня состоят в координации связи между двумя прикладными программами, работающих на разных рабочих станциях. Он также предоставляет услуги вышестоящему уровню представления. Это происходит в виде хорошо структурированного диалога. В число этих функций входит создание сеанса, управление передачей и приемом пакетов сообщений в течение сеанса и завершение сеанса. Этот уровень при необходимости также управляет переговорами, чтобы гарантировать правильный обмен данными. Диалог между пользователем сеансовой услуги (т.е. сторонами уровня представления и вышестоящим уровнем) может состоять из нормального или ускоренного обмена данными. Он может быть дуплексным, т.е. одновременной двусторонней передачей, когда каждая сторона имеет возможность независимо вести передачу, или полудуплексной, т.е. с одновременной передачей только в одну сторону. В последнем случае для передачи управления с одной стороны к другой применяются специальные метки. Уровень сеанса предоставляет услугу синхронизации для преодоления любых обнаруженных ошибок. При этой услуге метки синхронизации должны вставляться в поток данных пользователями услуги сеанса. Если будет обнаружена ошибка, то сеансовое соединение должно быть возвращено в определённое состояние, пользователи должны вернуться в установленную точку диалогового потока, сбросить часть переданных данных и затем восстановит передачу, начиная с этой точки. компьютерный телеконференция связь сеть

Уровень представления. Управляет и преобразует синтаксис блоков данных, которыми обмениваются оконечные пользователи. Такая ситуация может возникать в неоднотипных ПК (IBM PC, Macintosh, DEC, Next, Burrogh), которым необходимо обмениваться данными. Назначение - преобразование синтаксических блоков данных.

Прикладной уровень. Протоколы прикладного уровня придают соответствующую семантику или смысл обмениваемой информации. Этот уровень является пограничным между ПП и процессами модели OSI. Сообщение, предназначенное для передачи через компьютерную сеть, попадает в модель OSI в данной точке, проходит через уровень 1 (физический), пересылается на другой PC, и проходит от уровня 1 в обратном порядке до достижения ПП на другом PC через ее прикладной уровень. Таким образом, прикладной уровень обеспечивает взаимопонимание двух прикладных программ на разных компьютерах.

3. Разновидности каналов связи

Среда передачи данных - совокупность линий передачи данных и блоков взаимодействия (т.е. сетевого оборудования, не входящего в станции данных), предназначенных для передачи данных между станциями данных. Среды передачи данных могут быть общего пользования или выделенными для конкретного пользователя.

Линия передачи данных - средства, которые используются в информационных сетях для распространения сигналов в нужном направлении.

Канал (канал связи) - средства односторонней передачи данных. Примером канала, может быть, полоса частот, выделенная одному передатчику при радиосвязи.

Канал передачи данных - средства двустороннего обмена данными, включающие аппаратуру окончания канала данных и линию передачи данных. По природе физической среды передачи данных (ПД) различают каналы передачи данных на оптических линиях связи, проводных (медных) линиях связи и беспроводные.

Проводные линии связи : Проводные линии электросвязи делятся на кабельные, воздушные и оптоволоконные.

Факсимильная связь : Факсимильная (или фототелеграфная) связь - это электрический способ передачи графической информации - неподвижного изображения текста или таблиц, чертежей, схем, графиков, фотографий и т.п. Осуществляется при помощи факсимильных аппаратов: телефаксов и каналов электросвязи (главным образом телефонных).

Оптоволоконные линии связи : В качестве проводных линий связи используются в основном телефонные линии и телевизионные кабели. Наиболее развитой является телефонная проводная связь. Но ей присущи серьезные недостатки: подверженность помехам, затухание сигналов при передаче их на значительные расстояния и низкая пропускная способность. Всех этих недостатков лишены оптоволоконные линии - вид связи, при котором информация передается по оптическим диэлектрическим волноводам ("оптическому волокну").

Оптическое волокно считается самой совершенной средой для передачи больших потоков информации на большие расстояния. Оно изготовлено из кварца, основу которого составляет двуокись кремния - широко распространенного и недорогого материала, в отличие от меди. Оптическое волокно очень компактное и легкое, оно имеет диаметр всего около 100 мкм.

Оптоволоконные линии отличают от традиционных проводных линий:

Очень высокая скорость передачи информации (на расстояние более 100 км без ретрансляторов);

Защищенность передаваемой информации от несанкционированного доступа;

Высокая устойчивость к электромагнитным помехам;

Стойкость к агрессивным средам;

Возможность передавать по одному волокну одновременно до 10 миллионов телефонных разговоров и одного миллиона видеосигналов;

Гибкость волокон;

Малые размеры и масса;

Искро-, взрыво- и пожаробезопасность;

Простота монтажа и укладки;

Низкая себестоимость;

Высокая долговечность оптических волокон - до 25 лет.

В настоящее время обмен информацией между континентами осуществляется главным образом через подводные оптоволоконные кабели, а не через спутниковую связь. При этом главной движущей силой развития подводных оптоволоконных линий связи является Интернет.

Беспроводные системы связи : Беспроводные системы связи осуществляются по радиоканалам.

В 1930-е гг. были освоены метровые, а в 40-е - дециметровые и сантиметровые волны, распространяющиеся прямолинейно, не огибая земной поверхности (т. е. в пределах прямой видимости), что ограничивает прямую связь на этих волнах расстоянием в 40-50 км в равнинной местности, а в горных районах - в несколько сотен километров. Поскольку ширина диапазонов частот, соответствующих этим длинам волн, - от 30 Мгц до 30 Ггц - в 1000 раз превышает ширину всех диапазонов частот ниже 30 Мгц (волны длиннее 10 м), они могут передавать огромные потоки информации и осуществлять многоканальную связь. В то же время ограниченная дальность распространения и возможность получения острой направленности с антенной несложной конструкции позволяют использовать одни и те же длины волн во множестве пунктов без взаимных помех. Передача на значительные расстояния достигается применением многократной ретрансляции в линиях радиорелейной связи или с помощью спутников связи, находящихся на большой высоте (около 40 тыс. км) над Землей (см. "Космическая связь"). Позволяя вести на больших расстояниях одновременно десятки тысяч телефонных разговоров и передавать десятки телевизионных программ, радиорелейная и спутниковая связь по своим возможностям являются значительно более эффективными, чем обычная дальняя радиосвязь на метровых волнах.

Радиорелейные линии связи : Радиорелейная связь первоначально применялась для организации многоканальных линий телефонной связи, в которых сообщения передавались с помощью аналогового электрического сигнала. Первая такая линия протяженностью 200 км с 5 телефонными каналами появилась в США в 1935 году. Она соединяла Нью-Йорк и Филадельфию.

За последние десятилетия необходимость передавать данные - информацию, представленную в цифровом виде, - привела к созданию цифровых систем передачи. Появились цифровые радиорелейные системы передачи данных, способные обмениваться цифровой информацией.

Спутниковая связь и навигация : Космическая или спутниковая связь по существу является разновидностью радиорелейной связи и отличается тем, что ее ретрансляторы находятся не на поверхности Земли, а на спутниках в космическом пространстве.

В 1980-е годы началось развитие персональной спутниковой связи. В начале XXI века число ее абонентов составляет несколько миллионов человек, а еще через 10 лет - значительно больше. Произойдет объединение спутниковых и наземных систем связи в единую глобальную систему персональной связи. Будет обеспечена досягаемость любого абонента путем набора его телефонного номера независимо от его местонахождения. В этом состоит преимущество спутниковой связи по сравнению с сотовой (она рассматривается ниже в этой главе), поскольку она не имеет привязки к конкретной местности. Ведь в начале XXI века зона охвата сотовой связи составляет только 15% земной поверхности. Поэтому спрос на персональную подвижную связь во многих регионах мира можно обеспечить только с помощью спутниковых систем связи. Кроме речевой (радиотелефонной) связи они позволяют определять месторасположение (координаты) потребителей.

Спутниковый телефон непосредственно соединяется со спутником, находящимся на околоземной орбите. Со спутника сигнал поступает на наземную станцию, откуда передается в обычную телефонную сеть. Число спутников, необходимое для стабильной связи в любой точке планеты, зависит от радиуса орбиты той или иной системы спутников.

В настоящее время действует первая глобальная система связи "Иридиум". Она позволяет клиенту оставаться на связи, где бы он не находился, и пользоваться при этом одним и тем же телефонным номером.

Система состоит из 66 низкоорбитальных спутников, расположенных на расстоянии 780 км от поверхности Земли. Она обеспечивает прием и передачу сигнала с мобильного телефона, находящегося в любой точке земного шара. Сигнал, поступивший на спутник, передается по цепочке на следующий спутник, пока не дойдет до ближайшей к вызываемому абоненту наземной станции системы. Таким образом обеспечивается высокое качество сигнала.

Основной недостаток персональной спутниковой связи - ее относительная дороговизна по сравнению с сотовой. Кроме того, в спутниковые телефоны встраиваются передатчики большой мощности. Поэтому они считаются небезопасными для здоровья пользователей.

Самые надежные спутниковые телефоны работают в сети Инмарсат, созданной более 20 лет назад. Спутниковые телефоны системы "Инмарсат" представляют собой чемоданчик с откидной крышкой размером с первые портативные компьютеры. Крышка спутникового телефона по совместительству является и антенной, которую необходимо поворачивать по направлению к спутнику (на дисплее телефона отображается уровень сигнала). В основном такие телефоны используются на судах, поездах или большегрузных автомобилях. Каждый раз, когда необходимо позвонить или ответить на чей-то звонок, нужно будет устанавливать спутниковый телефон на какую-нибудь ровную поверхность, раскрывать крышку и крутить его, определяя направление максимального сигнала. Стоят такие спутниковые телефоны более 2500 долларов и весят от 2,2 кг. Минута разговора по такому спутниковому телефону стоит 2,5 доллара США и выше.

Пейджинговая связь : Пейджинговая связь - это радиотелефонная связь, пересылка по телефону продиктованных абонентом-отправителем сообщений и прием их по радиоканалу абонентом-получателем с помощью пейджера - радиоприемника с жидкокристаллическим дисплеем, на котором высвечиваются принятые буквенно-цифровые тексты. Пейджер - это средство односторонней связи: на него можно только получать сообщения, но отправлять с него сообщения нельзя.

История пейджинга как средства персонального радиовызова началась с середины 1950-х годов в Англии. Первое такое устройство было разработано в 1956 году. Количество абонентов могло быть не более 57. Когда абонент получал тоновый сигнал, он должен был поднести устройство к уху и в речевой форме прослушать сообщение, которое передавал диспетчер. Пользователями первой сети в Англии стали врачи. Сети, существовавшие в то время, носили местный характер и служили нуждам конкретных служб. Самыми крупными из них были службы аэропортов. Некоторые подобные сети существуют и сегодня. Широкое распространение пейджинга началось в конце 1970-х годов в США.

С тех пор системы пейджинга получили достаточно широкое распространение в городах Европы и США. В это же время пейджинг пришел в Россию.

Первые пейджеры были простыми приемниками частотно-модулированного сигнала. Они содержали несколько настроенных контуров, отслеживающих характерную последовательность низкочастотных сигналов (тонов). При получении этих тонов устройство подавало звуковые сигналы. Поэтому такие пейджеры называют тональными.

Переход к цифровым системам был неизбежен. Тональное кодирование не подходило для передачи буквенно-цифровых сообщений.

Мобильная сотовая связь : Связь называют мобильной, если источник информации либо ее получатель (или оба) перемещаются в пространстве. Радиосвязь с момента возникновения была мобильной. Первые радиостанции предназначались для связи с подвижными объектами - кораблями. Ведь один из первых приборов радиосвязи А.С. Попова был установлен на броненосце "Адмирал Апраксин". И именно благодаря радиосвязи с ним удалось зимой 1899/1900 годов спасти этот корабль, затертый во льдах в Балтийском море.

Долгие годы для осуществления индивидуальной радиосвязи между двумя абонентами требовался свой отдельный канал радиосвязи, работающий на одной частоте. Одновременную радиосвязь по многим каналам можно было бы обеспечить, выделив каждому каналу определенную полоску частот. Но ведь частоты нужны и для радиовещания, телевидения, радиолокации, радионавигации, военных нужд. Поэтому и число каналов радиосвязи было весьма ограничено. Она использовалась для военных целей, правительственной связи. Так, в автомобилях, которыми пользовались члены политбюро ЦК КПСС, были установлены телефоны мобильной связи. Устанавливалась они в полицейских машинах и радиотакси. Для того чтобы мобильная связь стала массовой, понадобилась новая идея ее организации. Эту идею в 1947 году высказал Д. Ринг, сотрудник американской компании Bell Laboratories. Она заключалась в разделении пространства на небольшие участки - соты (или ячейки) радиусом 1-5 километров и в отделении радиосвязи в пределах одной ячейки от связи между ячейками. Это позволяло использовать в разных сотах одни и те же частоты. В центре каждой ячейки предлагалось расположить базовую - приемно-передающую - радиостанцию для обеспечения радиосвязи в пределах ячейки со всеми абонентами. У каждого абонента своя микрорадиостанция - "мобильный телефон" - комбинация телефона, приемопередатчика и мини-компьютера. Абоненты связываются между собой через базовые станции, соединенные друг с другом и с городской телефонной сетью.

Каждая сота должна обслуживаться базовым радиопередатчиком с ограниченным радиусом действия и фиксированной частотой. Это дает возможность повторно использовать ту же частоту в других сотах. Во время разговора сотовый радиотелефон соединен с базовой станцией радиоканалом, по которому передается телефонный разговор. Размеры соты определяются максимальной дальностью связи радиотелефонного аппарата с базовой станцией. Эта максимальная дальность является радиусом соты.

Идея мобильной сотовой связи состоит в том, что, еще не выйдя из зоны действия одной базовой станции, мобильный телефон попадает в зону действия любой соседней вплоть до наружной границы всей зоны сети.

Для этого созданы системы антенн-ретрансляторов, перекрывающих свою "соту" - область поверхности Земли. Чтобы связь была надежной, расстояние между двумя соседними антеннами должно быть меньше радиуса их действия. В городах оно составляет около 500 метров, а в сельской местности - 2-3 км. Мобильный телефон может принимать сигналы сразу от нескольких антенн-ретрансляторов, но настраивается он всегда на самый мощный сигнал.

Идея мобильной сотовой связи заключалась еще и в применении компьютерного контроля за телефонным сигналом от абонента, когда он переходит от одной сотовой ячейки к другой. Именно компьютерный контроль позволил в течение всего лишь тысячной доли секунды переключать мобильный телефон с одного промежуточного передатчика на другой. Все происходит так быстро, что абонент просто этого не замечает.

Центральной частью системы мобильной связи являются компьютеры. Они отыскивают абонента, находящегося в любой из сот, и подключают его к телефонной сети. Когда абонент перемещается из одной ячейки в другую, они передают абонента с одной базовой станции на другую, а также подключают абонента из "чужой" сотовой сети к "своей", когда он оказывается в зоне ее действия, - осуществляют роуминг (что по-английски означает "странствие" или "бродяжничество").

Принципы современной мобильной связи были достижением уже конца 40-х годов. Однако в те времена компьютерная техника была еще на таком уровне, что ее коммерческое применение в системах телефонной связи было затруднено. Поэтому практическое применение сотовой связи стало возможным только после изобретения микропроцессоров и интегральных полупроводниковых микросхем.

Важным преимуществом мобильной сотовой связи является возможность пользоваться ею вне общей зоны своего оператора - роуминг. Для этого различные операторы договариваются между собой о взаимной возможности пользования своим зонами для пользователей. Абонент, покидая общую зону своего оператора, автоматически переключается на зоны других операторов даже при перемещении из одной страны в другую, например, из России в Германию или во Францию. Либо, находясь в России, пользователь может звонить по сотовой связи в любую страну. Таким образом, сотовая связь обеспечивает пользователю возможность связываться по телефону с любой страной, где бы он не находился.

Ведущие компании-производители сотовых телефонов ориентируются на единый европейский стандарт - GSM. Именно поэтому их аппаратура технически совершенна, но относительно недорога. Ведь они могут позволить себе выпускать огромные партии телефонов, находящих сбыт.

Удобным дополнением к сотовому телефону стала система коротких сообщений SMS (Short Message Service). Она используется для передачи коротких сообщений прямо на телефон современной цифровой системы GSM без применения дополнительного оборудования, только с помощью цифровой клавиатуры и экранчика-дисплея сотового телефона. Прием SMS-сообщений производится также на цифровой дисплей, которым оснащен любой сотовый телефон. SMS можно использовать в тех случаях, когда обычный телефонный разговор не является самым удобным видом связи (например, в шумном переполненном поезде). Можно послать знакомому по SMS свой номер телефона. Из-за низкой стоимости SMS является альтернативой телефонному разговору. Максимальная величина SMS-сообщения составляет 160 символов. Посылать его можно несколькими способами: звонком в специальную службу, а также с помощью своего телефона GSM с функцией отправки, с помощью Интернета. Система SMS может обеспечивать дополнительные услуги: посылать на Ваш телефон GSM курс валют, прогноз погоды и т.д. По существу, телефон GSM с системой SMS является альтернативой пейджеру.

Но и система SMS - не последнее слово в сотовой связи. В наиболее современных сотовых телефонах (например, фирмы Nokia) появилась функция Chat (в русской версии - "диалог"). С ее помощью можно общаться в режиме реального времени с другими владельцами сотовых телефонов, как это делается в Интернете. По существу, это новый вид обмена посланиями SMS. Для этого вы составляете послание своему собеседнику и отправляете его. Текст вашего послания появляется на дисплеях обоих сотовых телефонов - вашего и вашего собеседника. Потом он вам отвечает и на дисплеях высвечивается его послание. Таким образом, вы ведете электронный диалог. Но если сотовый телефон вашего собеседника не поддерживает данную функцию, то он будет получать обычные SMS-сообщения.

Появились и сотовые телефоны с поддержкой высокоскоростного доступа в Интернет через GPRS (General Packet Radio Service) - стандарт пакетной передачи данных по радиоканалам, при котором телефону не нужно "дозваниваться": аппарат постоянно поддерживает соединение, отправляет и принимает пакеты данных. Выпускаются и сотовые телефонные аппараты со встроенной цифровой фотокамерой.

По данным исследовательской компании Informal Telecoms & Media (ITM) число пользователей мобильной связи в мире в 2007 году составляет 3,3 млрд. человек.

Наконец, самые сложные и дорогие аппараты - это смартфоны и коммуникаторы, сочетающие возможности сотового телефона и карманного компьютера.

Интернет-телефония : Одним из самых современных и экономичных видов связи стала Интернет-телефония. Днем ее рождения можно считать 15 февраля 1995 года, когда фирма VocalTec выпустила свой первый soft-phone - программу, служащую для обмена голосом по сети IP. Затем Microsoft выпустил в октябре 1996 года первую версию NetMeeting. А уже в 1997 году стали вполне обычными соединения через Интернет двух обычных телефонных абонентов, находящихся в совершенно разных местах планеты.

Почему обычная междугородная и международная телефонная связь так дорога? Объясняется это тем, что во время разговора вы занимаете целый канал связи, причем не только когда вы говорите или слушаете собеседника, но и когда вы молчите или отвлекаетесь от разговора. Так происходит при передаче голоса по телефону обычным аналоговым способом.

При цифровом же способе информацию можно передавать не непрерывно, а отдельными "пакетами". Тогда по одному каналу связи можно посылать информацию одновременно от многих абонентов. Этот принцип пакетной передачи информации подобен перевозке множества писем с разными адресами в одном почтовом вагоне. Ведь не "гоняют" же один почтовый вагон для перевозки каждого письма в отдельности! Такое временное "пакетное уплотнение" позволяет намного эффективнее использовать существующие каналы связи, "сжимать" их. На одном конце канала связи информация делится на пакеты, каждый из которых, подобно письму, снабжается своим индивидуальным адресом. По каналу связи пакеты многих абонентов передаются "вперемешку". На другом конце канала связи пакеты с одним адресом снова объединяются и направляются своему адресату. Такой пакетный принцип широко используется в сети Интернет.

Через персональный компьютер можно по сети Internet посылать и получать письма, тексты, документы, рисунки, фотографии. Но точно так же работает и Интернет-телефония (IP-телефония) - телефонный разговор двух пользователей персональных компьютеров.

Для этого оба пользователя должны иметь микрофоны, соединенные с компьютером, и наушники или звуковые колонки, а их компьютеры - звуковые карты (желательно для двухсторонней связи). При этом компьютер преобразует аналоговый "голосовой" сигнал (электрический аналог звука) в цифровой (комбинации импульсов и пауз), который затем передается по сетям Интернета.

На другом конце линии компьютер вашего собеседника производит обратное преобразование (цифровой сигнал в аналоговый), и голос воспроизводится как в обычном телефоне. Интернет-телефония значительно дешевле междугородных и международных разговоров по обычному телефону. Ведь при IP-телефонии нужно платить только за пользование Интернетом.

Имея персональный компьютер, звуковую карту, совместимые с ней микрофон и наушники (или звуковые колонки), Вы можете с помощью Интернет-телефонии позвонить любому абоненту, у которого обычный городской телефон. При этом разговоре Вы также будете платить только за пользование Интернетом.

Перед началом пользования Интернет-телефонией абоненту - владельцу персонального компьютера необходимо установить на него специальную программу.

Для пользования услугами Интернет-телефонии вообще не обязательно иметь персональный компьютер. Для этого достаточно иметь обычный телефон с тональным набором. В этом случае каждая набранная цифра уходит в линию не в виде разного количества электрических импульсов, как при вращении диска, а в виде переменных токов разной частоты. Такой тоновый режим есть в большинстве современных телефонных аппаратов.

Для пользования Интернет-телефонией с помощью телефонного аппарата нужно купить кредитную карточку, и позвонить на мощный центральный компьютер-сервер по указанному на карточке номеру. Затем автомат сервера голосом (по выбору на русском или английском языке) сообщает команды: набрать с помощью кнопок телефонного аппарата серийный номер и ключ карточки, набрать код страны и номер своего будущего собеседника.

Далее сервер превращает аналоговый сигнал в цифровой, отправляет его в другой город, страну или на другой континент в находящийся там сервер, который снова преобразует цифровой сигнал в аналоговый и отправляет его нужному абоненту. Собеседники разговаривают как по обычному телефону, правда, иногда чувствуется небольшая (на доли секунды) задержка ответа. Напомним еще раз, что для экономии каналов связи голосовая информация передается "пакетами" цифровых данных: ваша голосовая информация расчленяется на отрезки, пакеты, называемые Интернет-протоколами (IP).

TCP/IP (Transmission Control Protocol / Internet Protocol) - это основной интернет-протокол, или формат передачи данных в Интернете. При этом IР обеспечивает продвижение пакета по сети, а ТСР гарантирует надежность его доставки. Они обеспечивают разбивку передаваемых данных на пакеты, передачу каждого из них получателю по произвольному маршруту, а потом - сборку в правильном порядке и без потерь.

По каналу связи последовательно передаются не только ваши пакеты, но и пакеты нескольких других абонентов. На другом конце линии связи все ваши пакеты снова объединяются, и ваш собеседник слышит всю вашу речь. Для того чтобы не чувствовать задержки в разговоре, этот процесс не должен превышать 0,3 секунды. Так производится сжатие информации, благодаря которому Интернет-телефония в несколько раз дешевле обычных междугородных и тем более международных переговоров.

В 2003 году была создана программа Skype (www.skype.com), совершенно бесплатная и не требующая от пользователя практически никаких знаний ни для ее установки, ни для использования. Она позволяет разговаривать с видеосопровождением собеседникам, сидящим у своих компьютеров в разных концах света. Для того чтобы собеседники могли видеть друг друга, компьютер каждого из них должен быть снабжен web-камерой.

Вот такой длинный путь в развитии средств связи проделало человечество: от сигнальных костров и барабанов до сотового мобильного телефона, который позволяет практически мгновенно связаться двум людям, находящимся в любых точках нашей планеты.

4. Организация доступа к информационным сетям

4.1 Структура территориальных сетей

Глобальная сеть Internet - самая крупная и единственная в своем роде сеть в мире. Среди глобальных сетей она занимает уникальное положение. Правильнее ее рассматривать как объединение многих сетей, сохраняющих самостоятельное значение.

Действительно, Internet не имеет ни четко выраженного владельца, ни национальной принадлежности. Любая сеть может иметь связь с Internet и, следовательно, рассматриваться как ее часть, если в ней используются принятые для Internet протоколы TCP/IP или имеются конверторы в протоколы TCP/IP. Практически все сети национального и регионального масштабов имеют выход в Internet.

Типичная территориальная (национальная) сеть имеет иерархическую структуру.

Верхний уровень - федеральные узлы, связанные между собой магистральными каналами связи. Магистральные каналы физически организуются на ВОЛС или на спутниковых каналах связи.

Средний уровень - региональные узлы, образующие региональные сети. Они связаны с федеральными узлами и, возможно, между собой выделенными высоко- или среднескоростными каналами, такими, как каналы Т1, Е1, B-ISDN или радиорелейные линии.

Нижний уровень - местные узлы (серверы доступа), связанные с региональными узлами, преимущественно коммутируемыми или выделенными телефонными каналами связи, хотя заметна тенденция к переходу к высоко- и среднескоростным каналам.

Именно к местным узлам подключаются локальные сети малых и средних предприятий, а также компьютеры отдельных пользователей. Корпоративные сети крупных предприятий соединяются с региональными узлами выделенными высоко- или среднескоростными каналами.

4.2 Основные виды доступа

4.2. 1 Сервис телекоммуникационных технологий

Основными услугами, предоставляемыми телекоммуникационными технологиями являются:

Электронная почта;

Передача файлов;

Телеконференции;

Справочные службы (доски объявлений);

Видеоконференции;

Доступ к информационным ресурсам (информационным базам) сетевых серверов;

Мобильная сотовая связь;

Компьютерная телефония.

Специфика телекоммуникаций проявляется, прежде всего, в прикладных протоколах. Среди них наиболее известны протоколы, связанные с Internet, и протоколы ISO-IP (ISO 8473), относящиеся к семиуровневой модели открытых систем. К прикладным протоколам Internet относятся следующие:

Telnet - протокол эмуляции терминала, или, другими словами, протокол реализации дистанционного управления используется для подключения клиента к серверу при их размещении на разных компьютерах, пользователь через свой терминал имеет доступ к компьютеру-серверу;

FTP - протокол файлового обмена (реализуется режим удаленного узла), клиент может запрашивать и получать файлы с сервера, адрес которого указан в запросе;

HTTP (Hypertext Transmission Protocol) - протокол для связи WWW-серверов и WWW-клиентов;

NFS - сетевая файловая система, обеспечивающая доступ к файлам всех UNIX-машин локальной сети, т.е. файловые системы узлов выглядят для пользователя как единая файловая система;

SMTP, IMAP, POP3 - протоколы электронной почты.

Указанные протоколы реализуются с помощью соответствующего программного обеспечения. Для Telnet, FTP, SMTP на серверной стороне выделены фиксированные номера протокольных портов.

4.2. 2 Электронная почта

Электронная почта (E-mail) - средство обмена сообщениями по электронным коммуникациям (в режиме off-line). Можно пересылать текстовые сообщения и архивированные файлы. В последних могут содержаться данные (например, тексты программ, графические данные) в различных форматах.

4.2. 3 Файловый обмен

Файловый обмен - доступ к файлам, распределенным по различным компьютерам. В сети Internet на прикладном уровне используется протокол FTP. Доступ возможен в режимах off-line и on-line.

В режиме off-line посылается запрос к FTP-серверу, сервер формирует и посылает ответ на запрос. В режиме on-line осуществляется интерактивный просмотр каталогов FTP-сервера, выбор и передача нужных файлов. На ЭВМ пользователя нужен FTP-клиент.

4.2. 4 Телеконференции и "доски объявлений"

Телеконференции - доступ к информации, выделенной для группового использования в отдельных конференциях (newsgroups). Возможны глобальные и локальные телеконференции. Включение материалов в newsgroups, рассылка извещений о новых поступивших материалах, выполнение заказов - основные функции программного обеспечения телеконференций. Возможны режимы E-mail и on-line.

Самая крупная система телеконференций - USENET. В USENET информация организована иерархически. Сообщения рассылаются или лавинообразно, или через списки рассылки.

Телеконференции могут быть с модератором или без него. Пример: работа коллектива авторов над книгой по спискам рассылки.

Существуют также средства аудиоконференций (голосовых телеконференций). Вызов, соединение, разговор происходят для пользователя как в обычном телефоне, но связь идет через Internet.

Электронная "доска объявлений" BBS (Bulletin Board System) - технология, близкая по функциональному назначению к телеконференции, позволяет централизованно и оперативно направлять сообщения для многих пользователей.

Программное обеспечение BBS сочетает в себе средства электронной почты, телеконференций и обмена файлами. Примеры программ, в которых имеются средства BBS, - Lotus Notes, World-group.

4.2. 5 Доступ к распределенным базам данных

В системах "клиент/сервер" запрос должен формироваться в ЭВМ пользователя, а организация поиска данных, их обработка и формирование ответа на запрос относятся к ЭВМ-серверу.

При этом нужная информация может быть распределена по различным серверам. В сети Internet имеются специальные серверы баз данных, называемые WAIS (Wide Area Information Server), в которых могут содержаться совокупности баз данных под управлением различных СУБД.

Типичный сценарий работы с WAIS-сервером:

Выбор нужной базы данных;

Формирование запроса, состоящего из ключевых слов;

Посылка запроса к WAIS-серверу;

Получение от сервера заголовков документов, соответствующих заданным ключевым словам;

Выбор нужного заголовка и его посылка к серверу;

Получение текста документа.

К сожалению, WAIS в настоящее время не развивается, поэтому используется мало, хотя индексирование и поиск по индексам в больших массивах неструктурированной информации, что было одной из основных функций WAIS, - задача актуальная.

4.2. 6 Информационная система WWW

WWW (World Wide Web - всемирная паутина) - гипертекстовая информационная система сети Internet. Другое ее краткое название - Web. Это более современная система предоставляет пользователям большие возможности.

Во-первых, это гипертекст - структурированный текст с введением в него перекрестных ссылок, отражающих смысловые связи частей текста. Слова-ссылки выделяются цветом и/или подчеркиванием. Выбор ссылки вызывает на экран связанный со словом-ссылкой текст или рисунок. Можно искать нужный материал по ключевым словам.

Во-вторых, облегчено представление и получение графических изображений. Информация, доступная по Web-технологии, хранится в Web-серверах.

Сервер имеет программу, постоянно отслеживающую приход на определенный порт (обычно это порт 80) запросов от клиентов. Сервер удовлетворяет запросы, посылая клиенту содержимое запрошенных Web-страниц или результаты выполнения запрошенных процедур. Клиентские программы WWW называют браузерами.

Имеются текстовые и графические браузеры. В браузерах имеются команды листания, перехода к предыдущему или последующему документу, печати, перехода по гипертекстовой ссылке и т.п.

Для подготовки материалов и их включения в базу WWW разработаны специальный язык HTML (Hypertext Markup Language) и реализующие его программные редакторы, например Internet Assistant в составе редактора Word или Site Edit, подготовка документов предусмотрена и в составе большинства браузеров.

Для связи Web-серверов и клиентов разработан протокол HTTP, работающий на базе TCP/IP. Web-сервер получает запрос от браузера, находит соответствующий запросу файл и передает его для просмотра в браузер.

Заключение

Технологии Интранет и Интернет продолжают развиваться. Разрабатываются новые протоколы; пересматриваются старые. NSF значительно усложнила систему, введя свою магистральную сеть, несколько региональных сетей и сотни университетских сетей.

Другие группы также продолжают присоединяться к Интернету. Самое значительное изменение произошло не из-за присоединения дополнительных сетей, а из-за дополнительного трафика.

Физики, химики, и астрономы работают и обмениваются объемами данных большими, чем исследователи в компьютерных науках, составляющие большую часть пользователей трафика раннего Интернета.

Эти новые ученые привели к значительному увеличению загрузки Интернета, когда они начали использовать его, и загрузка постоянно увеличивалась по мере того, как они все активнее использовали его.

Чтобы приспособиться к росту трафика, пропускная способность магистральной сети NSFNET была увеличена вдвое, приведя к тому, что текущая пропускная способность приблизительно в 28 раз больше, чем первоначальная; планируется еще одно увеличение, чтобы довести этот коэффициент до 30.

На настоящий момент трудно предсказать, когда исчезнет необходимость дополнительного повышения пропускной способности. Рост потребностей в сетевом обмене не был неожиданным. Компьютерная индустрия получила большое удовольствие от постоянных требований на увеличение вычислительной мощности и большего объема памяти для данных в течение долгих лет.

Пользователи только начали понимать, как использовать сети. В будущем мы можем ожидать постоянное увеличение потребностей во взаимодействии.

Поэтому потребуются технологии взаимодействия с большей пропускной способностью, чтобы приспособиться к этому росту.

Расширение Интернета заключается в сложности, возникшей из-за того, что несколько автономных групп являются частями объединенного Интернета. Исходные проекты для многих подсистем предполагали централизованное управление. Потребовалось много усилий, чтобы доработать эти проекты для работы при децентрализованном управлении.

Итак, для дальнейшего развития информационных сетей потребуются более высокоскоростные коммуникационные технологии.

Список литературы

1. Лазарев В.Г. Интеллектуальные цифровые сети: Справочник./Под ред. академика Н.А. Кузнецова. - М.: Финансы и статистика, 1996.

2. Новые технологии передачи информации. - URL: http://kiberfix.ucoz.ru. - (Дата обращения: 18.12.2015).

3. Пушнин А.В., Янушко В.В.. Информационные сети и телекоммуникации. - Таганрог: Издательство ТРТУ, 2005. 128 с.

4. Семенов Ю.А. Протоколы и ресурсы Internet. - М.: Радио и связь,1996.

5. Телекоммуникационные системы. - URL: http://otherreferats.allbest.ru/radio. - (Дата обращения: 18.12.2015).

6. Финаев В.И. Информационные обмены в сложных системах: Учебное пособие. - Таганрог: Изд-во ТРТУ, 2001.

Размещено на Allbest.ru

...

Подобные документы

    Принципы построения систем передачи информации. Характеристики сигналов и каналов связи. Методы и способы реализации амплитудной модуляции. Структура телефонных и телекоммуникационных сетей. Особенности телеграфных, мобильных и цифровых систем связи.

    курсовая работа , добавлен 29.06.2010

    Характеристика локальных компьютерных сетей и рассмотрение основных принципов работы глобальной сети Интернет. Понятие, функционирование и компоненты электронной почты, форматы ее адресов. Телекоммуникационные средства связи: радио, телефон и телевидение.

    курсовая работа , добавлен 25.06.2011

    Компоненты аппаратного обеспечения телекоммуникационных вычислительных сетей. Рабочие станции и коммуникационные узлы. Модули, образующие область взаимодействия прикладных процессов и физических средств. Направления методов обработки и хранения данных.

    лекция , добавлен 16.10.2013

    Шинная, древовидная, кольцевая топология телекоммуникационных сетей. Пользовательские, транспортные и доставочные агенты; межсетевые и транспортные протоколы. Синхронная и асинхронная передача данных. Применение концентратора, коммутатора, маршрутизатора.

    тест , добавлен 11.10.2012

    Предназначение коммутатора, его задачи, функции, технические характеристики. Достоинства и недостатки в сравнении с маршрутизатором. Основы технологии организации кабельных систем сети и архитектура локальных вычислительных сетей. Эталонная модель OSI.

    отчет по практике , добавлен 14.06.2010

    Обзор сетей передачи данных. Средства и методы, применяемые для проектирования сетей. Разработка проекта сети высокоскоростного абонентского доступа на основе оптоволоконных технологий связи с использованием средств автоматизированного проектирования.

    дипломная работа , добавлен 06.04.2015

    Современные системы телекоммуникаций; основные стандарты подвижной связи GSM, CDMA 200, UMTS. Использование операторами сотовых сетей новых услуг и технологий 3-го поколения. Характеристики новейших стандартов беспроводного доступа: Wi-Fi, Bluetooth.

    учебное пособие , добавлен 08.11.2011

    Исследование тенденций развития телекоммуникационных и сетевых информационных технологий. Распределенные сети на оптоволокне. Интерактивные коммерческие информационные службы. Интернет, электронная почта, электронные доски объявлений, видеоконференции.

    реферат , добавлен 28.11.2010

    Классификация телекоммуникационных сетей. Схемы каналов на основе телефонной сети. Разновидности некоммутируемых сетей. Появление глобальных сетей. Проблемы распределенного предприятия. Роль и типы глобальных сетей. Вариант объединения локальных сетей.

    презентация , добавлен 20.10.2014

    Понятие сетей передачи данных, их виды и классификация. Оптико-волоконные и волоконно-коаксиальные сети. Использование витой пары и абонентских телефонных проводов для передачи данных. Спутниковые системы доступа. Сети персональной сотовой связи.


2 Два корня компьютерных сетей Вычислительная и телекоммуникационная технологии Эволюция телекоммуникаций Эволюция вычислительной техники Эволюция компьютерных сетей Эволюция компьютерных сетей на стыке вычислительной техники и телекоммуникационных технологий


3 Телекоммуникационные системы 1. Основные сведения о телекоммуникационных системах Основная функция телекоммуникационных систем (ТКС), или территориальных сетей связи (ТСС), заключается в организации оперативного и надежного обмена информацией между абонентами, а также в сокращении затрат на передачу данных. Понятие «территориальная» означает, что сеть связи распределена на значительной территории. Она создается в интересах всего государства, учреждения, предприятия или фирмы, имеющих отделения по району, области или по всей стране. Главный показатель эффективности функционирования телекоммуникационных систем время доставки информации. Он зависит от ряда факторов: структуры сети связи, пропускной способности линий связи, способов соединения каналов связи между взаимодействующими абонентами, протоколов информационного обмена, методов доступа абонентов к передающей среде, методов маршрутизации пакетов и др.


4 Телекоммуникационные системы 1. Основные сведения о телекоммуникационных системах Характерные особенности территориальных сетей связи: разнотипность каналов связи от проводных каналов тональной частоты (телефона) до оптоволоконных и спутниковых; ограниченность числа каналов связи между удаленными абонентами, по которым необходимо обеспечить обмен данными, телефонную связь, видеосвязь, обмен факсимильными сообщениями; наличие такого критически важного ресурса, как пропускная способность каналов связи. Следовательно, территориальная сеть связи (ТСС) это географически распределенная сеть, объединяющая в себе функции традиционных сетей передачи данных (СПД), телефонных сетей и предназначенная для передачи трафика различной природы, с разными вероятностно-временными характеристиками.


5 Телекоммуникационные системы 1. Основные сведения о телекоммуникационных системах Типы сетей, линий и каналов связи. В ТВС используются сети связи телефонные, телеграфные, телевизионные, спутниковые. В качестве линий связи применяются: кабельные (телефонные линии, витая пара, коаксиальный кабель, волоконно-оптические линии), радиорелейные и радиолинии. Среди кабельных линий связи наилучшие показатели имеют световоды (т.е. волоконно-оптические линии). Основные их преимущества: высокая пропускная способность (сотни мегабит в секунду); нечувствительность к внешним полям и отсутствие собственных излучений; низкая трудоемкость прокладки оптического кабеля; искра-, взрыво- и пожаробезопасность; повышенная устойчивость к агрессивным средам; небольшая удельная масса; различные области применения. Недостатки: передача сигналов осуществляется только в одном направлении; подключение дополнительных ЭВМ значительно ослабляет сигнал; необходимые для световодов высокоскоростные модемы дороги; световоды, соединяющие ЭВМ, должны снабжаться преобразователями электрических сигналов в световые и обратно.


6 Телекоммуникационные системы 1. Основные сведения о телекоммуникационных системах В телекоммуникационных систем нашли применение следующие типы каналов связи: симплексные, когда передатчик и приемник связываются одним каналом связи, по которому информация передается только в одном направлении (это характерно для ТВ сетей связи); полудуплексные, когда два узла связи соединены также одним каналом, по которому информация передается попеременно то в одном направлении, то в противоположном (это характерно для информационно-справочных, запросно-ответных систем); дуплексные, когда два узла связи соединены двумя каналами (прямым и обратным), по которым информация одновременно передается в противоположных направлениях. Дуплексные каналы применяются в системах с решающей и информационной обратной связью.


7 Телекоммуникационные системы 1. Основные сведения о телекоммуникационных системах Коммутируемые и выделенные каналы связи. В сетях (ТКС, ТСС) различают выделенные (некоммутируемые) каналы связи и каналы с коммутацией на время передачи по ним информации. При использовании выделенных каналов связи приемопередающая аппаратура узлов связи постоянно соединена между собой. Этим обеспечивается высокая степень готовности системы к передаче информации, более высокое качество связи, поддержка большого объема трафика. Из-за сравнительно больших расходов на эксплуатацию сетей с выделенными каналами связи их рентабельность достигается только при условии достаточно полной загрузки каналов. Для коммутируемых каналов связи, создаваемых только на время передачи фиксированного объема информации, характерны высокая гибкость и сравнительно небольшая стоимость. Недостатки таких каналов: потери времени на коммутацию (установление связи между абонентами), возможность блокировки из-за занятости отдельных участков линии связи, более низкое качество связи, большая стоимость при значительном объеме трафика.


8 Телекоммуникационные системы 1. Основные сведения о телекоммуникационных системах Аналоговое и цифровое кодирование цифровых данных. Пересылка данных от одного узла сети к другому осуществляется последовательной передачей всех битов сообщения от источника к пункту назначения. Физически информационные биты передаются в виде аналоговых или цифровых электрических сигналов. Аналоговыми называются сигналы, которые могут представлять бесчисленное количество значений некоторой величины в пределах ограниченного диапазона. Цифровые (дискретные) сигналы могут иметь одно значение или конечный набор значений. При работе с аналоговыми сигналами для передачи закодированных данных используется аналоговый несущий сигнал синусоидальной формы, а при работе с цифровыми сигналами двух и много- уровневый дискретный сигнал. Аналоговые сигналы менее чувствительны к искажению, обусловленному затуханием в передающей среде, зато кодирование и декодирование данных проще осуществляется для цифровых сигналов.




10 Телекоммуникационные системы 1. Основные сведения о телекоммуникационных системах Синхронизация элементов сети это часть протокола связи. В процессе синхронизации обеспечивается синхронная работа аппаратуры приемника и передатчика, при которой приемник осуществляет выборку поступающих информационных битов строго в моменты их прихода. Различают синхронную передачу, асинхронную передачу и передачу с автоподстройкой. Синхронная передача отличается наличием дополнительной линии связи (кроме основной) для передачи синхронизирующих импульсов (СИ) стабильной частоты. Выдача битов данных передатчиком и выборка сигналов приемником производятся в моменты появления СИ. Это надежно, но необходима дополнительная линия. Асинхронная передача не требует дополнительной линии. Передача осуществляется небольшими фиксированными блоками, а для синхронизации используется старт-бит. В передаче с автоподстройкой синхронизация достигается за счет использования самосинхронизирующихся кодов (СК). Кодирование передаваемых данных с помощью СК заключается в том, чтобы обеспечить регулярные и частые изменения уровней сигнала в канале. Каждый переход используется для подстройки приемника.


11 Спутниковые сети связи (ССС). Космические аппараты (КА) связи запускаются на высоту км и находятся на геостационарной орбите, плоскость которой параллельна плоскости экватора. Три таких КА обеспечивают охват почти всей поверхности Земли. Взаимодействие между абонентами ССС осуществляется по цепи: АС-отправитель информации > передающая наземная станция >> спутник > приемная наземная станция >АС-получатель. Одна наземная станция обслуживает группу близлежащих АС. Для управления передачей данных между спутником и наземными станциями используются следующие способы. 1. Обычное мультиплексирование с частотным и временным разделением. 2. Обычная дисциплина «первичный/вторичный» с использованием или без использования методов и средств опроса/выбора. 3. Равноранговые дисциплины управления с равным правом доступа к каналу в условиях соперничества за канал. Телекоммуникационные системы 1. Основные сведения о телекоммуникационных системах передающая наземная станция >> спутник > приемная наземная станция >АС-получатель. Одна наземная станция обслуживает группу близлежащих АС. Для управления передачей данных между спутником и наземными станциями используются следующие способы. 1. Обычное мультиплексирование с частотным и временным разделением. 2. Обычная дисциплина «первичный/вторичный» с использованием или без использования методов и средств опроса/выбора. 3. Равноранговые дисциплины управления с равным правом доступа к каналу в условиях соперничества за канал. Телекоммуникационные системы 1. Основные сведения о телекоммуникационных системах">


12 Телекоммуникационные системы 1. Основные сведения о телекоммуникационных системах Основные преимуществам спутниковых сетей связи: большая пропускная способность, обусловленная работой спутников в широком диапазоне гигагерц новых частот. Спутник может поддерживать несколько тысяч речевых каналов связи; обеспечение связи между станциями, расположенными на очень больших расстояниях, и возможность обслуживания абонентов в самых труднодоступных точках; независимость стоимости передачи информации от расстояния между абонентами; возможность построения сети без физически реализованных коммутационных устройств. Недостатки спутниковых сетей связи: необходимость затрат средств и времени на обеспечение конфиденциальности передачи данных; наличие задержки приема радиосигнала наземной станцией из-за больших расстояний между спутником и стацией связи; возможность взаимного искажения радиосигналов от наземных станций, работающих на соседних частотах; подверженность сигналов влиянию различных атмосферных явлений.


13 Телекоммуникационные системы 2. Коммутация в сетях Коммутация является жизненно важным элементом связи абонентских систем (АС) между собой и с центрами управления, обработки и хранения информации в сетях. Узлы сети подключаются к некоторому коммутирующему оборудованию, избегая таким образом необходимости создания специальных линий связи. Коммутируемой транспортной сетью называется сеть, в которой между двумя (или более) конечными пунктами устанавливается связь по запросу. Примером такой сети является коммутируемая телефонная сеть. Существуют следующие методы коммутации: коммутация цепей (каналов); коммутация с промежуточным хранением, разделяемая на коммутацию сообщений и коммутацию пакетов.




15 Телекоммуникационные системы 2. Коммуникация в сетях Коммутация каналов (цепей). При коммутации каналов (цепей) между связываемыми конечными пунктами на протяжении всего временного интервала соединения обеспечивается обмен в реальном масштабе времени, причем биты передаются с неизменной скоростью по каналу с постоянной полосой пропускания. Преимущества метода коммутации цепей: отработанность технологии коммутации цепей; работа в диалоговом режиме и в реальном масштабе времени; обеспечение прозрачности независимо от числа соединений между АС; широкая область применения. Недостатки метода коммутации цепей: длительное время установления сквозного канала связи из-за возможного ожидания освобождения отдельных его участков; необходимость повторной передачи сигнала вызова из-за занятости коммутационного устройства в цепочке прохождения сигнала; отсутствие возможности выбора скоростей передачи информации; возможность монополизации канала одним источником информации; наращивание функций и возможностей сети ограниченно; не обеспечивается равномерность загрузки каналов связи.




17 Телекоммуникационные системы 2. Коммуникация в сетях Коммутация сообщений – ранний метод передачи данных (применяется в электронной почте, новостях). Технология - «запомнить и послать». Сообщение целиком сохраняет свою целостность в процессе его прохождения от одного узла к другому вплоть до пункта назначения, а транзитный узел не может начинать дальнейшую передачу части сообщения, если оно еще принимается. Преимущества метода: отсутствие необходимости в заблаговременном установлении канала; формирование маршрута из участков с различной пропускной способностью; реализация систем обслуживания запросов с учетом их приоритетов; возможность сглаживания пиковых нагрузок запоминанием потоков; отсутствие потерь запросов на обслуживание. Недостатки: необходимость реализации серьезных требований к емкости памяти в узлах связи для приема больших сообщений; недостаточные возможности по реализации диалогового режима и работы в реальном масштабе времени при передаче данных; каналы используются менее эффективно по сравнению с др. методами.


18 Телекоммуникационные системы 2. Коммуникация в сетях Коммутация пакетов сочетает в себе преимущества коммутации каналов и коммутации сообщений. Ее основные цели: обеспечение полной доступности сети и приемлемого времени реакции на запрос для всех пользователей, сглаживание асимметричных потоков между пользователями, обеспечение мультиплексирования возможностей каналов связи и портов компьютеров сети, рассредоточение критических компонентов сети. Данные разбиваются на короткие пакеты фиксированной длины. Каждый пакет снабжается протокольной информацией: коды начала и окончания пакета, адреса отправителя и получателя, номер пакета в сообщении, информация для контроля достоверности передаваемых данных. Независимые пакеты одного сообщения могут передаваться одновременно по различным маршрутам в составе дейтаграмм. Пакеты доставляются в пункт назначения, где из них формируется первоначальное сообщение. В отличие от коммутации сообщений коммутация пакетов позволяет: увеличить количество подключаемых станций; легче преодолеть трудности с подключением дополнительных линий связи; осуществлять альтернативную маршрутизацию, что создает повышенные удобства для пользователей; существенно сократить время на передачу данных, повысить пропускную способность и эффективность использования сетевых ресурсов. Сейчас пакетная коммутация является основной для передачи данных.




20 Телекоммуникационные системы 2. Коммуникация в сетях Вывод по разделу Анализ рассмотренных коммутационных технологий позволяет сделать вывод о возможности разработки комбинированного метода коммутации, основанного на использовании в определенном сочетании принципов коммутации сообщений, пакетов и обеспечивающего более эффективное управление разнородным трафиком.


21 Телекоммуникационные системы 3. Маршрутизация пакетов в сетях Сущность, цели и способы маршрутизации. Задача маршрутизации состоит в выборе маршрута для передачи от отправителя к получателю. Речь идет, прежде всего, о сетях с произвольной (ячеистой) топологией, в которых реализуется коммутация пакетов. Однако в современных сетях со смешанной топологией (звездно- кольцевой, звездно-шинной, многосегментной) реально стоит и решается задача выбора маршрута для передачи кадров, для чего используются соответствующие средства, например маршрутизаторы. В виртуальных сетях задача маршрутизации при передаче сообщения, расчленяемого на пакеты, решается единственный раз, когда устанавливается виртуальное соединение между отправителем и получателем. В дейтаграммных сетях, где данные передаются в форме дейтаграмм, маршрутизация выполняется для каждого отдельного пакета. Выбор маршрутов в узлах связи телекоммуникационных сетей производится в соответствии с реализуемым алгоритмом (методом) маршрутизации.






24 Телекоммуникационные системы 3. Маршрутизация пакетов в сетях Алгоритм маршрутизации это правило назначения выходной линии связи для передачи пакета, базирующееся на информации, содержащейся в заголовке пакета (адреса отправителя и получателя), информации о загрузке этого узла (длина очередей пакетов) и сети в целом. Основные цели маршрутизации заключаются в обеспечении: минимальной задержки пакета при его передаче от отправителя к получателю; максимальной пропускной способности сети; максимальной защиты пакета от угроз для содержащейся в нем информации; надежности доставки пакета адресату; минимальной стоимости передачи пакета адресату. Различают следующие способы маршрутизации: - централизованная маршрутизация; - распределенная (децентрализованная) маршрутизация; - смешанная маршрутизация


25 Телекоммуникационные системы 3. Маршрутизация пакетов в сетях 1. Централизованная маршрутизация реализуется в сетях с централизованным управлением. Выбор маршрута для каждого пакета осуществляется в центре управления сетью, а узлы сети связи только воспринимают и реализуют результаты решения задачи маршрутизации. Такое управление маршрутизацией уязвимо к отказам центрального узла и не отличается высокой гибкостью. 2. Распределенная (децентрализованная) маршрутизация выполняется в сетях с децентрализованным управлением. Функции управления маршрутизацией распределены между узлами сети, которые располагают для этого соответствующими средствами. Распределенная маршрутизация сложнее централизованной, но отличается большей гибкостью. 3. Смешанная маршрутизация характеризуется тем, что в ней в определенном соотношении реализованы принципы централизованной и распределенной маршрутизации. Задача маршрутизации в сетях решается при условии, что кратчайший маршрут, обеспечивающий передачу пакета за минимальное время, зависит от топологии сети, пропускной способности и нагрузки на линии связи.


26 Телекоммуникационные системы 3. Маршрутизация пакетов в сетях Методы маршрутизации - простая, фиксированная и адаптивная. Разница между ними в степени учета изменения топологии и нагрузки сети при выборе маршрута. 1. Простая маршрутизация отличается тем, что при выборе марш- рута не учитывается ни изменение топологии сети, ни изменение ее нагрузки. Она не обеспечивает направленной передачи пакетов и имеет низкую эффективность. Ее преимущества - простота реализации и обеспечение устойчивой работы сети при выходе из строя отдельных ее элементов. Практическое применение получили: случайная маршрутизация - для передачи пакета выбирается одно случайное свободное направление. Пакет «блуждает» по сети и с конечной вероятностью достигает адресата. лавинная маршрутизация предусматривает передачу пакета из узла по всем свободным выходным линиям. Имеет место явление «размножения» пакета. Основное преимущество такого метода гарантированное обеспечение оптимального времени доставки пакета адресату. Метод может использоваться в незагруженных сетях, когда требования по минимизации времени и надежности доставки пакетов достаточно высоки.


27 Телекоммуникационные системы 3. Маршрутизация пакетов в сетях 2. Фиксированная маршрутизация - при выборе маршрута учитывает- ся изменение топологии сети и не учитывается изменение ее нагрузки. Для каждого узла назначения направление передачи выбирается по таблице кратчайших маршрутов. Отсутствие адаптации к изменению нагрузки приводит к задержкам пакетов сети. Различают однопутевую и многопутевую фиксированные маршрутизации. Первая строится на основе единственного пути передачи пакетов между двумя абонентами, что сопряжено с неустойчивостью к отказам и перегрузкам, а вторая на основе нескольких возможных путей между двумя абонентами, из которых выбирается наиболее предпочтительный путь. Фиксированная маршрутизация применяется в сетях с мало изменяющейся топологией и установившимися потоками пакетов. 3. Адаптивная маршрутизация отличается тем, что принятие решения о направлении передачи пакетов осуществляется с учетом изменения как топологии, так и нагрузки сети. Существуют несколько модифи- каций адаптивной маршрутизации, различающихся тем, какая именно информация используется при выборе маршрута. Получили распрост- ранение локальная, распределенная, централизованная и гибридная адаптивная маршрутизация (смысл ясен из названия).


28 Телекоммуникационные системы 4. Защита от ошибок в сетях При передаче данных одна ошибка на тысячу переданных сигналов может серьезно отразиться на качестве информации. Существует множество методов обеспечения достоверности передачи информации (защиты от ошибок), отличающихся: по используемым средствам, по затратам времени на их применение, по степени обеспечения достоверности передачи информации. Практическое воплощение методов состоит из двух частей програм- мной и аппаратной. Соотношение между ними может быть самым различным, вплоть до почти полного отсутствия одной из частей. Основные причины возникновения ошибок при передаче в сетях: сбои в какой-то части оборудования сети или возникновение неблагоприятных событий в сети. Система передачи данных готова к такому и устраняет их с помощью предусмотренных планом средств; помехи, вызванные внешними источниками и атмосферными явлениями.


29 Телекоммуникационные системы 4. Защита от ошибок в сетях Среди многочисленных методов зашиты от ошибок выделяются три группы методов: групповые методы, помехоустойчивое кодирование и методы защиты от ошибок в системах передачи с обратной связью. Из групповых методов получили широкое применение мажоритарный метод и метод передачи информационными блоками с количественной характеристикой блока. Суть мажоритарного метода состоит в том, что каждое сообщение передается несколько раз (чаще три раза). Сообщения запоминаются и сравниваются, правильное выбирают по совпадению «2 из 3». Другой групповой метод, также не требующий перекодирования инфор- мации, предполагает передачу данных блоками с количественной характеристикой блока (число единиц или нулей, контрольная сумма символов и др.) На приемном пункте эта характеристика вновь подсчитывается и сравнивается с переданной по каналу связи. Если характеристики совпадают, считается, что блок не содержит ошибок. В противном случае на передающую сторону поступает сигнал с требованием повторной передачи блока. В современных ТВС такой метод получил самое широкое распространение.


30 Телекоммуникационные системы 4. Защита от ошибок в сетях Помехоустойчивое (избыточное) кодирование предполагает разработку и использование корректирующих (помехоустойчивых) кодов. Системы передачи с обратной связью делятся: на системы с решающей обратной связью и системы с информационной обратной связью. Особенностью систем с решающей обратной связью является то, что решение о необходимости повторной передачи информации принимает приемник. Применяется помехоустойчивое кодирование, с помощью которого на приемной станции осуществляется проверка принимаемой информации. При обнаружении ошибки на передающую сторону по каналу обратной связи посылается сигнал перезапроса, по которому информация передается повторно. В системах с информационной обратной связью передача информации осуществляется без помехоустойчивого кодирования. Приемник, приняв информацию по прямому каналу и и запомнив, передает ее обратно, где она сравнивается. При совпадении передатчик посылает сигнал подтверждения, в противном случае происходит повторная передача всей информации, т.е. решение о передаче принимает передатчик.

Телекоммуникация – связь на расстоянии (лат.)

Коммуникация (процессобмена информацией)является необходимым условием существования живых организмов, экологических сообществ и человеческого общества. Общественное развитие сопровождается развитием телекоммуникационных технологий. Особенно интенсивно телекоммуникационные технологии развиваются несколько последних десятилетий.

Телекоммуникациимогут быть могут быть определены как технологии, занимающиеся вопросами общения на расстоянии и это можно пояснить различными способами. Рис 8.2 показывает одно из возможных представлений различных секций телекоммуникаций.

Рис 8.2. Телекоммуникации: формы и виды

Телекоммуникации делятся на два вида: однонаправленные и двунаправленные. Однонаправленные, такие как массовые радиовещание и телевещание, предполагают передачу информации в одном направлении – от центра к абонентам. Двунаправленные поддерживают диалог между двумя абонентами.

Телекоммуникации используют механическиеи электрическиесредства, потому что исторически телекоммуникации развивались от механической до электрической формы, используя все более и более сложные электрические системы. Это - причина того, почему много традиционных операторов в телекоммуникациях типа национальной почты, телеграфных и телефонных компаний используют обе формы. Доля механических телекоммуникаций типа обычной почты и прессы (рассылки газет), как ожидают, уменьшится, тогда как доля электрических, особенно двунаправленных, увеличится и станет главной в будущем. Уже в наше время корпорации и пресса интересуются, прежде всего, электрическими телекоммуникациями (электросвязью) как возможностью выгодного бизнеса.

По краям рисунка 8.2. показаны телекоммуникационные службы, вначале механические: пресса (пересылка газет), почта; затем электрические: телеграф, телекс (абонентский телеграф), телефон, радио, телевидение, компьютерные сети, выделенные сети, кабельное телевидение и мобильный телефон.

Примерно в таком порядке и развивались исторически телекоммуникации.

Телекоммуникационная система – совокупность технических объектов, организационных мер и субъектов, реализующих процессы состоящих из: процессов соединения, процессов передачи и процессов доступа.

Для обмена информацией телекоммуникационные системы используют естественную или искусственную среду. Телекоммуникационные системы вместе со средой, которая используется для передачи образуют телекоммуникационные сети. Наиболее важными телекоммуникационными сетями являются (рис. 8.2.): почтовая связь; телефонная сеть общего пользования (ТФОП); мобильные телефонные сети; телеграфная сеть; интернет – глобальная сеть взаимодействия компьютерных сетей; сеть проводного радиовещания; сети кабельного телевидения; сети телевизионного и радио вещания; ведомственные сети связи, которые предоставляют услуги связи органам государственной службы, системы управления воздушным и морским движением, крупным производственным комплексам; глобальные сети спасения и безопасности.

Перечисленные выше телекоммуникационные системы, как правило, тесно взаимодействуют друг с другом и используют общие ресурсы для реализации связи. Для организации такого взаимодействия в каждом государстве и в глобальном масштабе действуют специальные органы, которые регулируют порядок использования общих ресурсов; определяют общие правила взаимодействия (протоколы) телекоммуникационных систем; разрабатывают перспективные телекоммуникационные технологии.

Для реализации связи на расстоянии телекоммуникационные системы используют: системы коммутации; системы передачи; системы доступа и управления каналами передачи.